Skip to main content
Log in

Isolation and Identification of Arsenic-Resistant Extremophilic Bacteria from the Crater-Lake Volcano “El Chichon”, Mexico

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The crater lake at “El Chichón” volcano is an extreme acid-thermal environment with high concentrations of heavy metals. In this study, two bacterial strains with the ability to resist high concentrations of arsenic (As) were isolated from water samples from the crater lake. Staphylococcus ARSC1-P and Stenotrophomonas ARSC2-V isolates were identified by use of the 16S rDNA gene. Staphylococcus ARSC1-P was able to grow in 400 mM of arsenate [As(V)] under oxic and anoxic conditions. The IC50 values were 36 and 382 mM for oxic and anoxic conditions, respectively. For its part, Stenotrophomonas ARSC2-V showed IC50 values of 110 mM and 2.15 for As(V) and arsenite [As(III)], respectively. Arsenic accumulated intracellularly in both species [11–25 nmol As × mg cellular prot−1 in cells cultured in 50 mM As(V)]. The present study shows evidence of microbes that can potentially be a resource for the bio-treatment of arsenic in contaminated sites, which highlights the importance of the “El Chichón” volcano as a source of bacterial strains that are adaptable to extreme conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data presented in this article is available.

Code Availability

Not applicable.

References

  1. Garbinski LD, Rosen BP, Chen J (2019) Pathways of arsenic uptake and efflux. Environ Int 126:585–597. https://doi.org/10.1016/J.ENVINT.2019.02.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morales-Simfors N, Bundschuh J, Herath I et al (2020) Arsenic in Latin America: a critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. Sci Total Environ 716:135564. https://doi.org/10.1016/j.scitotenv.2019.135564

    Article  CAS  PubMed  Google Scholar 

  3. Bundschuh J, Maity JP (2015) Geothermal arsenic: occurrence, mobility and environmental implications. Renew Sustain Energy Rev 42:1214–1222. https://doi.org/10.1016/j.rser.2014.10.092

    Article  CAS  Google Scholar 

  4. Birkle P, Bundschuh J, Sracek O (2010) Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico. Water Res 44:5605–5617. https://doi.org/10.1016/J.WATRES.2010.05.046

    Article  CAS  PubMed  Google Scholar 

  5. Taran Y, Rouwet D, Inguaggiato S, Aiuppa A (2008) Major and trace element geochemistry of neutral and acidic thermal springs at El Chichón volcano, Mexico. J Volcanol Geotherm Res 178:224–236. https://doi.org/10.1016/j.jvolgeores.2008.06.030

    Article  CAS  Google Scholar 

  6. Rincón-Molina CI, Hernández-García JA, Rincón-Rosales R et al (2019) Structure and diversity of the bacterial communities in the acid and thermophilic crater-lake of the volcano “El Chichón”, Mexico. Geomicrobiol J 36:97–109. https://doi.org/10.1080/01490451.2018.1509158

    Article  CAS  Google Scholar 

  7. Peña-Ocaña BA, Velázquez-Ríos IO, Alcántara-Hernández RJ et al (2020) Changes in the concentration of trace elements and heavy metals in el chichón crater lake active volcano. Polish J Environ Stud 30:295–304. https://doi.org/10.15244/pjoes/121045

    Article  CAS  Google Scholar 

  8. Ovando-Chacon SL, Tacias-Pascacio VG, Ovando-Chacon GE et al (2020) Characterization of thermophilic microorganisms in the geothermal water flow of El Chichón volcano crater lake. Water (Switzerland) 12:2172. https://doi.org/10.3390/W12082172

    Article  CAS  Google Scholar 

  9. Rincón-Molina CI, Martínez-Romero E, Ruiz-Valdiviezo VM et al (2020) Plant growth-promoting potential of bacteria associated to pioneer plants from an active volcanic site of Chiapas (Mexico). Appl Soil Ecol. https://doi.org/10.1016/J.APSOIL.2019.103390

    Article  Google Scholar 

  10. Peña-Ocaña BA, Ovando-Ovando CI, Puente-Sánchez F et al (2022) Metagenomic and metabolic analyses of poly-extreme microbiome from an active crater volcano lake. Environ Res 203:111862. https://doi.org/10.1016/j.envres.2021.111862

    Article  CAS  PubMed  Google Scholar 

  11. Ali Z, Waheed H, Kazi AG et al (2016) Duckweed: an efficient hyperaccumulator of heavy metals in water bodies. Plant Met Interact Emerg Remediat Tech. https://doi.org/10.1016/B978-0-12-803158-2.00016-3

    Article  Google Scholar 

  12. Gupta P (2018) Metals and micronutrients. Illustrated toxicology. Academic Press, pp 195–223

    Google Scholar 

  13. Mandal D, Sonar R, Saha I et al (2022) Isolation and identification of arsenic resistant bacteria: a tool for bioremediation of arsenic toxicity. Int J Environ Sci Technol 19:9883–9900. https://doi.org/10.1007/S13762-021-03673-9/METRICS

    Article  CAS  Google Scholar 

  14. Shakya S, Pradhan B, Smith L et al (2012) Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District. Nepal J Environ Manage 95:S250–S255. https://doi.org/10.1016/J.JENVMAN.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  15. Xu S, Xu R, Nan Z, Chen P (2018) Bioadsorption of arsenic from aqueous solution by the extremophilic bacterium Acidithiobacillus ferrooxidans DLC-5. Biocatal Biotransform 37:35–43. https://doi.org/10.1080/10242422.2018.1447566

    Article  CAS  Google Scholar 

  16. Armienta MA, Vilaclara G, De la Cruz-Reyna S et al (2008) Water chemistry of lakes related to active and inactive Mexican volcanoes. J Volcanol Geotherm Res 178:249–258. https://doi.org/10.1016/j.jvolgeores.2008.06.019

    Article  CAS  Google Scholar 

  17. Verryckt LT, Vicca S, Van Langenhove L et al (2022) Vertical profiles of leaf photosynthesis and leaf traits and soil nutrients in two tropical rainforests in French Guiana before and after a 3-year nitrogen and phosphorus addition experiment. Earth Syst Sci Data 14:5–18. https://doi.org/10.5194/ESSD-14-5-2022

    Article  Google Scholar 

  18. Olsen SR, Sommers LE (1983) Phosphorus. In: Page AL (ed) Methods of soil analysis, part 2, 2nd edn. John Wiley & Sons Ltd, Wisconsin, pp 403–430

    Google Scholar 

  19. Feregrino-Mondragón RD, Vega-Segura A, Sánchez-Thomas R et al (2021) The essential role of mitochondria in the consumption of waste-organic matter and production of metabolites of biotechnological interest in Euglena gracilis. Algal Res 56:102302. https://doi.org/10.1016/J.ALGAL.2021.102302

    Article  Google Scholar 

  20. Sambrook J, Russell DW, David W (2001) Molecular cloning : a laboratory manual. Cold Spring Harbor Laboratory Press

    Google Scholar 

  21. Greenblatt CL, Schiff JA (1959) A Pheophytin-like pigment in dark-adapted Euglena gracilis. J Protozool 6:23–28. https://doi.org/10.1111/j.1550-7408.1959.tb03922.x

    Article  CAS  Google Scholar 

  22. Macy JM, Santini JM, Pauling BV et al (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173:49–57

    Article  CAS  PubMed  Google Scholar 

  23. Liao V et al (2011) Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 123:20–29. https://doi.org/10.1016/j.jconhyd.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  24. Lira-Silva E, Santiago-Martínez MG, García-Contreras R et al (2013) Cd2+ resistance mechanisms in Methanosarcina acetivorans involve the increase in the coenzyme M content and induction of biofilm synthesis. Environ Microbiol Rep 5:799–808. https://doi.org/10.1111/1758-2229.12080

    Article  CAS  PubMed  Google Scholar 

  25. Galkiewicz JP, Kellogg CA (2008) Cross-kingdom amplification using Bacteria-specific primers: complications for studies of coral microbial ecology. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01303-08

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen YL, Lee CC, Lin YL et al (2015) Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples. BMC Bioinform. https://doi.org/10.1186/1471-2105-16-S18-S13

    Article  Google Scholar 

  27. Morton-Bermea O, Armienta M, Ramos S (2010) Rare-earth element distribution in water from El Chichón Volcano Crater Lake. Geof Int, Chiapas Mexico. https://doi.org/10.22201/igeof.00167169p.2010.49.1.1474

    Book  Google Scholar 

  28. Rouwet D, Taran Y, Inguaggiato S et al (2008) Hydrochemical dynamics of the “lake-spring” system in the crater of El Chichón volcano (Chiapas, Mexico). J Volcanol Geotherm Res 178:237–248. https://doi.org/10.1016/j.jvolgeores.2008.06.026

    Article  CAS  Google Scholar 

  29. Taran Y, Rouwet D (2008) Estimating thermal inflow to El Chichón crater lake using the energy-budget, chemical and isotope balance approaches. J Volcanol Geotherm Res 175:472–481. https://doi.org/10.1016/j.jvolgeores.2008.02.019

    Article  CAS  Google Scholar 

  30. Taran YA, Peiffer L (2009) Hydrology, hydrochemistry and geothermal potential of El Chichón volcano-hydrothermal system, Mexico. Geothermics 38:370–378. https://doi.org/10.1016/J.GEOTHERMICS.2009.09.002

    Article  CAS  Google Scholar 

  31. Armienta MA, De la Cruz-Reyna S, Ramos S et al (2014) Hydrogeochemical surveillance at El Chichón volcano crater lake, Chiapas, Mexico. J Volcanol Geotherm Res 285:118–128. https://doi.org/10.1016/j.jvolgeores.2014.08.011

    Article  CAS  Google Scholar 

  32. Cuoco E, De Francesco S, Tedesco D (2013) Hydrogeochemical dynamics affecting steam-heated pools at El Chichón Crater (Chiapas—Mexico). Geofluids 13:331–343. https://doi.org/10.1111/gfl.12028

    Article  CAS  Google Scholar 

  33. Quatrini R, Johnson DB (2018) Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH. Curr Opin Microbiol 43:139–147. https://doi.org/10.1016/J.MIB.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  34. Macur RE, Jay ZJ, Taylor WP et al (2013) Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park. Geobiology 11:86–99. https://doi.org/10.1111/gbi.12015

    Article  CAS  PubMed  Google Scholar 

  35. Héry M, Herrera A, Vogel TM et al (2005) Effect of carbon and nitrogen input on the bacterial community structure of Neocaledonian nickel mine spoils. FEMS Microbiol Ecol 51:333–340. https://doi.org/10.1016/J.FEMSEC.2004.09.008

    Article  PubMed  Google Scholar 

  36. Dean WE (2006) Characterization of organic matter in lake sediments from Minnesota and Yellowstone National Park. Open-File Rep. https://doi.org/10.3133/OFR20061053

    Article  Google Scholar 

  37. Oliveira A, Pampulha ME, Neto MM, Almeida AC (2009) Enumeration andcharacterization of arsenic-tolerant diazotrophic bacteria in a long-term heavy-metal-contaminated soil. Water Air Soil Pollut. https://doi.org/10.1007/s11270-008-9907-5

    Article  Google Scholar 

  38. Patel A, Tiwari S, Prasad SM (2021) Arsenate and arsenite-induced inhibition and recovery in two diazotrophic cyanobacteria Nostoc muscorum and Anabaena sp: study on time-dependent toxicity regulation. Environ Sci Pollut Res 28:51088–51104. https://doi.org/10.1007/S11356-021-13800-1

    Article  CAS  Google Scholar 

  39. Crognale S, Zecchin S, Amalfitano S et al (2017) Phylogenetic structure and metabolic properties of microbial communities in Arsenic-rich waters of geothermal origin. Front Microbiol 8:2468. https://doi.org/10.3389/fmicb.2017.02468

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li X, Pan JF, Lu Z et al (2021) (2021) Arsenate toxicity to the marine microalga Chlorella vulgaris increases under phosphorus-limited condition. Environ Sci Pollut Res 2836(28):50908–50918. https://doi.org/10.1007/S11356-021-14318-2

    Article  Google Scholar 

  41. Joshi DN, Flora SJS, Kalia K (2009) Bacillus sp. strain DJ-1, potent arsenic hypertolerant bacterium isolated from the industrial effluent of India. J Hazard Mater 166:1500–1505. https://doi.org/10.1016/j.jhazmat.2008.12.127

    Article  CAS  PubMed  Google Scholar 

  42. Sher S, Zajif Hussain S, Rehman A (2020) Multiple resistance mechanisms in Staphylococcus sp. strain AS6 under arsenite stress and its potential use in amelioration of wastewater. J King Saud Univ—Sci 32:3052–3058. https://doi.org/10.1016/J.JKSUS.2020.08.012

    Article  Google Scholar 

  43. Biswas R, Majhi AK, Sarkar A (2019) The role of arsenate reducing bacteria for their prospective application in arsenic contaminated groundwater aquifer system. Biocatal Agric Biotechnol 20:101218. https://doi.org/10.1016/j.bcab.2019.101218

    Article  Google Scholar 

  44. Anderson CR, Cook GM (2004) Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Curr Microbiol 48:341–347. https://doi.org/10.1007/s00284-003-4205-3

    Article  CAS  PubMed  Google Scholar 

  45. Slyemi D, Bonnefoy V (2011) How prokaryotes deal with arsenic†. Environ Microbiol Rep 4:no-no. https://doi.org/10.1111/j.1758-2229.2011.00300.x

    Article  CAS  Google Scholar 

  46. Rodríguez-Martín D, Murciano A, Herráiz M et al (2022) Arsenate and arsenite differential toxicity in Tetrahymena thermophila. J Hazard Mater 431:128532. https://doi.org/10.1016/J.JHAZMAT.2022.128532

    Article  PubMed  Google Scholar 

  47. Kumar P, Dash B, Suyal DC et al (2021) Characterization of arsenic-resistant Klebsiella pneumoniae RnASA11 from contaminated soil and water samples and its bioremediation potential. Curr Microbiol 78:3258–3267. https://doi.org/10.1007/S00284-021-02602-W

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank to Dr. Josef Galthier Roblero Lucchetti for his comments regarding grammar and structure of this manuscript.

Funding

This work was supported by CONACyT grant CB-253281(VM-RV), and Project No. 14277.22-P from the ‘Tecnológico Nacional de Mexico’ funds (TecNM, México). We would like to thank CONACyT for the doctoral fellowship assigned to C. I. Ovando-Ovando (No. 766260).

Author information

Authors and Affiliations

Authors

Contributions

“All authors contributed to the study conception and design, as well as to analyzing all data. Material preparation and developed experiments were performed by CIO-O and RD F-M Collection of data was carried out by RJ-C, VMR-V, and CIO-O, who were also in charge of writing the first draft. The last version was composed and reviewed by CIO-O, RDF-M, RR-R, RJ-C and VMR-V. Biological material collection was performed by CIO-O and VMR-V. All authors commented on previous versions of the manuscript. All authors read, discussed, and approved the final manuscript.

Corresponding authors

Correspondence to Ricardo Jasso-Chávez or Víctor Manuel Ruíz-Valdiviezo.

Ethics declarations

Competing interest

All authors certify that they have neither affiliations nor involvement with any organization or entity. They also have no financial or non-financial interests in regards to the research subject and to the materials discussed in this manuscript.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2436 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovando-Ovando, C.I., Feregrino-Mondragón, R.D., Rincón-Rosales, R. et al. Isolation and Identification of Arsenic-Resistant Extremophilic Bacteria from the Crater-Lake Volcano “El Chichon”, Mexico. Curr Microbiol 80, 257 (2023). https://doi.org/10.1007/s00284-023-03327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03327-8

Navigation