Skip to main content

Advertisement

Log in

The Effect of Cadmium Tolerant Plant Growth Promoting Rhizobacteria on Plant Growth Promotion and Phytoremediation: A Review

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a heavy metal of considerable toxicity with destructive impacts on plants, microbes and environments. Its toxicity is due to mishandling and manual hazards in plants and is primarily observed within the soil to cause decline of plants and microbial activity inside the rhizosphere. Cadmium accumulation in crops and the probability of Cd entering the food chain are grave for public health in the worldwide. Cadmium toxicity leads to depletion in seed germination, initial seedling growth, plant biomass, chlorosis, necrosis, hindrance of photosynthetic machinery and other physiological and biological activities in plants. Cadmium triggers the reactive oxygen species (ROS) that influences gene mutation and DNA damage that affects the cell cycle and cell division. Cd toxicity altered the levels of phenolic compounds, carbohydrates, glycine betaine, proline and organic acids in crops. Under stress conditions, the plant growth promoting rhizobacteria (PGPR) have various properties such as enzymatic activities, plant growth hormones production, phosphate solubilization, siderophores production and chelating agents that help the plants tolerate against Cd stress and also increase phenolic compound levels and osmolytes. Hence, this review highlights the crucial role of cadmium tolerant PGPR for crop production, declining metal phytoavailability and enhancing morphological and physiological boundaries of plants under stress conditions. It could be an environment friendly and cost effective technology under sustainable crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code availability

Not applicable.

References

  1. Gupta A, Gupta R, Singh RL (2017) Microbes and environment. Principles and applications of environmental biotechnology for a sustainable future. Springer Singapore India pp. 978–981 https://doi.org/10.1007/978-981-10-1866-4-3

  2. Hinsinger P, Marschner P (2006) Rhizosphere perspectives and challenges a tribute to Lorenz Hiltner, Germany. Plant Soil 283:8–7. https://doi.org/10.1007/s11104-006-0057-5

    Article  CAS  Google Scholar 

  3. Chibuike G, Obiora S (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12. https://doi.org/10.1155/2014/752708

    Article  CAS  Google Scholar 

  4. Zafar-Ul-Hye M, Naeem M, Danish S, Khan MJ, Fahad S, Datta R, Brtnicky M, Kintl A, Hussain GS, El-Esawi MA et al (2020) Effect of cadmium-tolerant rhizobacteria on growth attributes and chlorophyll contents of bitter gourd under cadmium toxicity. Plants (Basel) 9(10):1386. https://doi.org/10.3390/plants9101386

    Article  CAS  PubMed  Google Scholar 

  5. Garnier L, Simon PF, Thuleau P, Agnel JP, Blein JP et al (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969. https://doi.org/10.1111/j.1365-3040.2006.01571.x

    Article  CAS  PubMed  Google Scholar 

  6. Foyer CH, Noctor G (2013) Redox signaling in plants. Antioxi Redox Signal 18:2087–2090. https://doi.org/10.1089/ars.2013.5278

    Article  CAS  Google Scholar 

  7. Jing YD, He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8(3):192–207. https://doi.org/10.1631/jzus.2007.B0192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharma RK, Archana G (2016) Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl Soil Ecol 107:66–78. https://doi.org/10.1016/j.apsoil.2016.05.009

    Article  Google Scholar 

  9. Kumar A, Patel JS, Meena VS, Ramteke PW (2019) Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture. J Plant Nutri. https://doi.org/10.1080/01904167.2019.1616757

    Article  Google Scholar 

  10. Hye MZ, Naeem M, Danish S, Khan MJ, Fahad S, Datta R, Brtnicky M, Kintl A, Hussain GS, El Esawi MA et al (2020) Effect of cadmium-tolerant rhizobacteria on growth attributes and chlorophyll contents of bitter gourd under cadmium toxicity. Plants 9:1386. https://doi.org/10.3390/plants9101386

    Article  CAS  Google Scholar 

  11. Dong MF (2017) Inoculation of Fe/Mn-oxidizing bacteria enhances Fe/Mn plaque formation and reduces Cd and as accumulation in rice plant tissues. Ecotoxicol Environ Saf 144:507–513. https://doi.org/10.1007/s11104-016-2829-x

    Article  CAS  Google Scholar 

  12. Nesler A (2017) Functional components of the bacterial CzcCBA efflux system reduce cadmium uptake and accumulation in transgenic tobacco plants. New Biotechnol 35:54–61. https://doi.org/10.1016/j.nbt.2016.11.006

    Article  CAS  Google Scholar 

  13. Wang Q, Chen L, He LY, Sheng XF (2016) Increased biomass and reduced heavy metal accumulation of edible tissues of vegetable crops in the presence of plant growth-promoting Neorhizobium huautlense T1–17 and biochar. Agric Ecosys Environ 228:9–18

    Article  CAS  Google Scholar 

  14. Vassilev A, Lidon F (2011) Cd-induced membrane damages and changes in soluble protein and free amino acid contents in young barley plants. Emirates J Food Agri. https://doi.org/10.9755/ejfa.v23i2.6347

    Article  Google Scholar 

  15. Yang LP, Zhu J, Wang P, Zeng J, Tan R, Yang YZ, Liu ZM et al (2018) Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxi Environ Saf 160:10–18. https://doi.org/10.1016/j.ecoenv.2018.05.026

    Article  CAS  Google Scholar 

  16. Huihui Z, Xin L, Zisong X, Yue W, Zhiyuan T, Meijunc A, Yuehui Z, Wenxu Z, Nan X, Guangyu S et al (2020) Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicol Environ Saf 195:110469. https://doi.org/10.1016/j.ecoenv.2020.110469

    Article  CAS  PubMed  Google Scholar 

  17. Patsikka E, Marja K, Tyystjarvi E (2002) Excess copper predisposes photosystem II to photo inhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Am Soc Plant Physiol 21:834–847. https://doi.org/10.1104/pp.004788

    Article  CAS  Google Scholar 

  18. Xie Y, Hu L, Du Z, Sun X, Amombo E et al (2014) Effects of cadmium exposure on growth and metabolic profile of bermudagrass [Cynodon dactylon (L.) Pers]. PLos ONE 9(12):e115279. https://doi.org/10.1371/journal.pone.0115279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996. https://doi.org/10.1104/pp.111.175448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang HM, Yang JC, Zhang JF (2007) Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environ Pollut 147:750–756. https://doi.org/10.1016/j.envpol.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  21. Qiu Q, Wang Y, Yang Z (2011) Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis) cultivars differing in cadmium accumulation. Food Chem Toxico 49(9):2260–2267. https://doi.org/10.1016/j.fct.2011.06.024

    Article  CAS  Google Scholar 

  22. Vocciante M, Grifoni M, Fusini D, Petruzzelli G, Franchi E et al (2022) The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. App Sci 12:1231. https://doi.org/10.5772/intechopen.87083

    Article  CAS  Google Scholar 

  23. Umar W, Ayub MA, Rehman ur MZ, Ahmad HR, Farooqi ZUR, Shahzad A, Rehman U, Mustafa A, Nadeem M et al (2020) Nitrogen and phosphorus use efficiency in agroecosystems. In: Kumar S, Meena RS, Jhariya MK (eds) Resources use efficiency in agriculture. Springer, Singapore, pp 213–257. https://doi.org/10.1007/978-981-15-6953-1_7

    Chapter  Google Scholar 

  24. Sureshbabu K, Amaresan N, Kumar K (2016) Amazing multiple function properties of plant growth promoting rhizobacteria in the rhizosphere soil. Int J Curr Microbiol App Sci 5(661):68. https://doi.org/10.20546/ijcmas.2016.502.074

    Article  CAS  Google Scholar 

  25. Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. App Environ Microbiol 65:2429–2438. https://doi.org/10.1128/AEM.65.6.2429-2438.1999

    Article  CAS  Google Scholar 

  26. Kobayashi T, Nishizawa NK (2012) Iron uptake translocation, and regulation in higher plants. Ann Rev Plant Biol 63:131–152. https://doi.org/10.1146/annurev-arplant-042811-105522

    Article  CAS  Google Scholar 

  27. Guo J, Muhammad H, Lv X, Wei T, Ren X, Jia H, Atif S, Hua L et al (2020) Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: a review. Chemo 246:125823. https://doi.org/10.1016/j.chemosphere.2020.125823

    Article  CAS  Google Scholar 

  28. Singh P, Singh RK, Zhou Y, Wang J, Jiang Y, Shen N, Wang Y, Yang L, Jiang M et al (2022) Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: a review. J Plant Intera 17(1):220–238. https://doi.org/10.1080/17429145.2022.2029963

    Article  Google Scholar 

  29. Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants role of plant growth regulators. Protoplasma 2523:399–413. https://doi.org/10.1007/s00709-014-0710-4

    Article  CAS  Google Scholar 

  30. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:1438. https://doi.org/10.1101/cshperspect.a001438

    Article  CAS  Google Scholar 

  31. Shahid M, Javed MT, Mushtaq A, Akram MS, Mahmood F, Ahmed T, Noman M, Azeem M et al (2019) Microbe-mediated mitigation of cadmium toxicity in plants. In: Shahid M, Javed MT, Mushtaq A, Akram MS, Mahmood F, Ahmed T, Noman M, Azeem M (eds) Cadmium toxicity and tolerance in plants from physiology to remediation. Elsevier, Amsterdam, pp 427–449. https://doi.org/10.1016/B978-0-12-814864-8.00017-6

    Chapter  Google Scholar 

  32. Karcz W, Kurtyka R (2007) Effect of cadmium on growth, proton extrusion and membrane potential in maize coleoptile segments. Bio Planta 51:713–719. https://doi.org/10.1007/s10535-007-0147-0

    Article  CAS  Google Scholar 

  33. Hu YF, Zhou G, Na XF (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170:965–975. https://doi.org/10.1016/j.jplph.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  34. Zhou X, Zhang X, Ma C, Wu F, Jin X, Dini-Andreote F, Wei Z et al (2022) Biochar amendment reduces cadmium uptake by stimulating cadmium-resistant PGPR in the tomato rhizosphere. Chemos 307:136138. https://doi.org/10.1016/j.chemosphere.2022.136138

    Article  CAS  Google Scholar 

  35. Rolon-Cardens GA, Arvizu-Gómez JL, Soria-Guerra RE, Pacheco-Aguilar JR, Alatorre-Cobos F, Hernández-Morales A et al (2022) The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. Environ Geochem Health. https://doi.org/10.1007/s10653-021-01179-4

    Article  Google Scholar 

  36. Ghosh PK, Majumdar S (2022) Cadmium stress management in plants: prospects of plant growth-promoting rhizobacteria. In: Roy S, Mathur P, Chakraborty AP, Saha SP (eds) Plant stress: challenges and management in the new decade. Springer, Cham, pp 235–249. https://doi.org/10.1007/978-3-030-95365-2_15

    Chapter  Google Scholar 

  37. Zafar-ul-Hye M, Danish S, Abbas M, Ahmad M, Munir T et al (2019) ACC deaminase producing PGPR Bacillus amyloliquefaciens and agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy 9:343. https://doi.org/10.3390/agronomy9070343

    Article  CAS  Google Scholar 

  38. Maxton A, Singh P, Masih SA (2018) ACC deaminase-producing bacteria mediated drought and salt tolerance in Capsicum annuum. J Plant Nutri 41(5):574–583. https://doi.org/10.1080/01904167.2017.1392574

    Article  CAS  Google Scholar 

  39. Hassan W, Bashir S, Ali F, Ijaz M, Hussain M et al (2016) Role of ACC-deaminase and/or nitrogen fixing rhizobacteria in growth promotion of wheat (Triticum aestivum L.) under cadmium pollution. Environ Earth Sci 75:1–14. https://doi.org/10.1007/s12665-015-4902-9

    Article  CAS  Google Scholar 

  40. Kamran M, Malik Z, Parveen A, Huang L, Riaz M et al (2020) Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. J Plant Growth Regul 39:266–281. https://doi.org/10.1007/s00344-019-09980-3

    Article  CAS  Google Scholar 

  41. Farid M, Shakoor MB, Ehsan S, Ali S, Zubair M et al (2013) Morphological, physiological and biochemical responses of different plant species to Cd stress. Intern J Chem and Biochem Sci 3:53–60

    Google Scholar 

  42. Huang H, Ullah F, Zhou DX, Yi M, Zhao Y et al (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800. https://doi.org/10.3389/fpls.2019.00800

    Article  PubMed  PubMed Central  Google Scholar 

  43. Karuppanapandian T, Moon J, Kim C, Manoharan K, Kim W et al (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aus J crop sci 5:709–725. https://doi.org/10.3316/informit.282079847301776

    Article  CAS  Google Scholar 

  44. Sandalio LM, Dalurzo HC, Gomez M, Romero PMC, LA Del R et al (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126. https://doi.org/10.1093/jexbot/52.364.2115

    Article  CAS  PubMed  Google Scholar 

  45. Somashekaraiah BV, Padmmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physio Plant 85:85–89. https://doi.org/10.1111/J.1399-3054

    Article  CAS  Google Scholar 

  46. Okamoto OK, Pinto E, Latorre LR, Bechara EJH, Colepicolo P et al (2001) Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts. Arch Environ Contam Toxicol 40:18–24. https://doi.org/10.1007/s002440010144

    Article  CAS  PubMed  Google Scholar 

  47. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K et al (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319. https://doi.org/10.1093/jxb/53.372.1305

    Article  CAS  PubMed  Google Scholar 

  48. Singh S, Khan NA, Nazar R, Anjum NA (2008) Photosynthetic traits and activities of antioxidant enzymes in Blackgram (Vigna mungo L. Hepper) under cadmium stress. Am J plant Physiol 3:25–32. https://doi.org/10.3923/ajpp.2008.25.32

    Article  CAS  Google Scholar 

  49. Tran TA, Popova LP (2013) Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot 37:1–13. https://doi.org/10.3906/bot-1112-16

    Article  CAS  Google Scholar 

  50. Zulfqar U, Ayub A, Hussain S, Waraich EA, El-Esawi MA, Ishfaq M, Ahmad M, Ali N, Maqsood MF et al (2021) Cadmium toxicity in plants: recent progress on morpho-physiological effects and remediation strategies. J Soil Sci Plant Nutri 22:212–269. https://doi.org/10.1007/s42729-021-00645-3

    Article  CAS  Google Scholar 

  51. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  52. Haluskova L, Valentovicova K, Huttova J, Mistrik I, Tamas L et al (2009) Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol Biochem 47:1069–1074. https://doi.org/10.1016/j.plaphy.2009.08.003

    Article  CAS  PubMed  Google Scholar 

  53. Bano A, Gupta A, Rai S, Fatima T, Sharma S et al (2021) Mechanistic role of reactive oxygen species and its regulation via the antioxidant system under environmental stress. Chapter Plant stress Physio. https://doi.org/10.5772/intechopen.101045

    Article  Google Scholar 

  54. Bashir K, Nagasaka S, Itai RN, Kobayashi T, Takahashi M et al (2007) Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Plant Mol Biol 65:277–284. https://doi.org/10.1007/s11103-007-9216-1

    Article  CAS  PubMed  Google Scholar 

  55. Hojati M, Modarres-Sanavy SAM, Karimi M, Ghanati F (2010) Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta Physiol Plant 33:105–112. https://doi.org/10.1007/s11738-010-0521-y

    Article  Google Scholar 

  56. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Tren Plant Sci 7:405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

    Article  CAS  Google Scholar 

  57. El-beltagi HS, Mohamed HI (2013) Alleviation of cadmium toxicity in Pisum sativum L. seedlings by calcium chloride. Notu Botanic Horti Agrobota Cluj-Napoca 41(1):157–168. https://doi.org/10.15835/nbha4118910

    Article  CAS  Google Scholar 

  58. Lavid N, Schwartz A, Lewinsohn E, Tel-Or E (2001) Phenols and phenol oxidases are involved in cadmium accumulation in the water plants Nymphoides peltate (Menyanthaceae) and Nymphaeae (Nymphaeaceae). Planta 214(2):189–195. https://doi.org/10.1007/s004250100610

    Article  CAS  PubMed  Google Scholar 

  59. Zheng G, Lv HP, Gao S, Wang SR (2010) Effects of cadmium on growth and antioxidant responses in Glycyrrhiza uralensis seedlings. Plant Soil and Environ 56:08–515. https://doi.org/10.17221/30/2010-PSE

    Article  Google Scholar 

  60. Kieffera P, Schröder P, Dommes J, Hoffmanna L, Renauta J, Hausman JF et al (2009) Proteomic and enzymatic response of poplar to cadmium stress. J Proteomic 72(3):379–396. https://doi.org/10.1016/j.jprot.2009.01.014

    Article  CAS  Google Scholar 

  61. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11. https://doi.org/10.1093/jexbot/53.366.1

    Article  CAS  PubMed  Google Scholar 

  62. Manzoor M (2019) Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb contaminated soil. Sci Tot Environ 660:18–24. https://doi.org/10.1016/j.scitotenv.2019.01.013

    Article  CAS  Google Scholar 

  63. Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R et al (2019) Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Report 9:5855. https://doi.org/10.1038/s41598-019-41899-3

    Article  CAS  Google Scholar 

  64. Dalcorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667. https://doi.org/10.4161/psb.5.6.11425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS et al (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physio 167:161–168. https://doi.org/10.1016/j.jplph.2009.09.006

    Article  CAS  Google Scholar 

  66. Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyper accumulator Thlaspi caerulescens and the non-hyperacumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906. https://doi.org/10.1046/j.1365-3040.1997

    Article  CAS  Google Scholar 

  67. Kang SM, Radhakrishnan R, You YH, Khan AL, Lee KE et al (2015) Enterobacter asburiae KE 17 association regulates physiological changes and mitigates the toxic effects of heavy metals in soybean. Plant Biol 17:1013–1022. https://doi.org/10.1111/plb.12341

    Article  CAS  PubMed  Google Scholar 

  68. Parmar P, Kumari N, Sharma V (2013) Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud 54:45. https://doi.org/10.1186/1999-3110-54-45

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kamran MA, Syed JH, Eqani SAMAS, Munis MFH, Chaudhary HJ et al (2015) Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa. Environ Sci Pol Res 22:9275–9283. https://doi.org/10.1007/s11356-015-4074-x

    Article  CAS  Google Scholar 

  70. Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R et al (2018) Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep 9:5855. https://doi.org/10.1038/s41598-019-41899-3

    Article  CAS  Google Scholar 

  71. Li J, Cao X, Jia X, Liu L, Cao H, Qin W, Li M et al (2021) Iron deficiency leads to chlorosis through impacting chlorophyll synthesis and nitrogen metabolism in Areca catechu L. Front Plant Sci 12:710093. https://doi.org/10.3389/fpls.2021.710093

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mendoza CDG, Butko E, Springer F, Torpey J, Komives E, Kehr J, Schroeder J et al (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259. https://doi.org/10.1111/j.1365-313X.2008.03410.x

    Article  CAS  Google Scholar 

  73. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776. https://doi.org/10.1111/j.1469-8137.2008.02748.x

    Article  CAS  PubMed  Google Scholar 

  74. Kuhnlenz T, Schmidt H, Uraguchi S, Clemens S (2014) Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil. J Exp Bot 65:4241–4253. https://doi.org/10.1093/jxb/eru195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen J, Yang L, Gu J, Bai X, Ren Y et al (2015) MAN3 gene regulates cadmium tolerance through the glutathione dependent pathway in Arabidopsis thaliana. New Phytol 205:570–582. https://doi.org/10.1111/nph.13101

    Article  CAS  PubMed  Google Scholar 

  76. Song, (2017) A cadmium stress-responsive gene AtFC1 confers plant tolerance to cadmium toxicity. BMC Plant Bio 1:187. https://doi.org/10.1186/s12870-017-1141-0

    Article  CAS  Google Scholar 

  77. Rascio N, Navari IF (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181. https://doi.org/10.1016/j.plantsci.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  78. Mei H, Hirschi KD, Cheng NH, Zhao J, Park S, Escareno RA, Pittman JK et al (2009) Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4. New Phytol 183:95–105. https://doi.org/10.1111/j.1469-8137.2009.02831.x

    Article  CAS  PubMed  Google Scholar 

  79. Hasan MK, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ et al (2017) Responses of plant proteins to heavy metal stress: a review. Front Plant Sci 8:1–16. https://doi.org/10.3389/fpls.2017.01492

    Article  Google Scholar 

  80. Espinas NA, Kobayashi K, Sato Y, Mochizuki N, Takahashi K et al (2016) Allocation of heme is differentially regulated by ferrochelatase isoforms in Arabidopsis cells. Front Plant Sci 7:1326. https://doi.org/10.3389/fpls.2016.01326

    Article  PubMed  PubMed Central  Google Scholar 

  81. Raza A, Habib M, Kakavand SN, Zahid Z, Zahra N, Sharif R, Hasanuzzaman M et al (2020) Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms. Biol 9:177. https://doi.org/10.3390/biology9070177

    Article  CAS  Google Scholar 

  82. Ahmadpour P, Soleimani M (2015) Cadmium accumulation and translocation in Jatropha curcas grown in contaminated soils. JWSS-Isfahan Uni Technol 19:179–190

    Google Scholar 

  83. Naveed M, Mustafa A, Majeed S, Naseem Z, Saeed Q, Khan A, Nawaz A, Baig KS, Chen JT et al (2020) Enhancing cadmium tolerance and pea plant health through enterobacter sp. MN17 inoculation together with biochar and gravel sand. Plants 9:530. https://doi.org/10.3390/plants9040530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pramanik K, Mitra S, Sarkar A, Soren T, Maiti TK et al (2017) Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Env Sci Pollut Res 24:24419–24437. https://doi.org/10.1007/s11356-017-0033-z

    Article  CAS  Google Scholar 

  85. Mitra S, Pramanik K, Sarkar A, Ghosh PK, Soren T, Maiti TK et al (2018) Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress. Ecotoxicol Environ Safety 156:183–196. https://doi.org/10.1016/j.ecoenv.2018.03.001

    Article  CAS  PubMed  Google Scholar 

  86. Ahmad I, Akhtar MJ, Asghar HN, Ghafoor U, Shahid M et al (2016) Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul 35:303–315. https://doi.org/10.1007/s00344-015-9534-5

    Article  CAS  Google Scholar 

  87. Eriksson J, Ingrid O (2007) Cadmium concentration in winter wheat as affected by nitrogen fertilizer. Eur J Agro 26:209–214. https://doi.org/10.1016/j.eja.2006.09.010

    Article  CAS  Google Scholar 

  88. Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267. https://doi.org/10.1016/j.fct.2010.08.035

    Article  CAS  PubMed  Google Scholar 

  89. Mahdi I, Fahsi N, Hafidi M, Benjelloun S, Allaoui A, Biskri L et al (2021) Rhizospheric phosphate solubilizing Bacillus atrophaeus GQJK17 S8 increases quinoa seedling, withstands heavy metals, and mitigates salt stress. Sustainability 13:3307. https://doi.org/10.3390/su13063307

    Article  CAS  Google Scholar 

  90. Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92(6):659–66. https://doi.org/10.1016/j.chemosphere.2013.01.082

    Article  CAS  PubMed  Google Scholar 

  91. Pal AK, Sengupta C (2019) Isolation of cadmium and lead tolerant plant growth promoting rhizobacteria: Lysinibacillus varians and pseudomonas putida from indian agricultural soil. Soil Sedim Contam: An Intern J 28(7):601–629. https://doi.org/10.1080/15320383.2019.1637398

    Article  CAS  Google Scholar 

  92. Pramanik K, Mitra S, Sarkar A, Maiti TK (2018) Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. J Hazar Mater 351:317–329. https://doi.org/10.1016/j.jhazmat.2018.03.009

    Article  CAS  Google Scholar 

  93. González O, Ortíz CR, Díaz PC, Díaz PAL, Magaña DV et al (2017) Non-ribosomal peptide synthases from Pseudomonas aeruginosa play a role in cyclodipeptide biosynthesis, quorum Sensing regulation, and root development in a plant host. Microb Ecol 73:616–629. https://doi.org/10.1007/s00248-016-0896-4

    Article  CAS  PubMed  Google Scholar 

  94. Zafar-ul-Hye M, Shahjahan A, Danish S, Abid M, Qayyum MF et al (2018) Mitigation of cadmium toxicity induced stress in wheat by ACC-deaminase containing PGPR isolated from cadmium polluted wheat rhizosphere. Pak J Bot 50(5):1727–1734

    CAS  Google Scholar 

  95. Ghavami N, Alikhani HA, Pourbabaei AA, Besharati H (2017) Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. J Plant Nutri 40(5):736–746. https://doi.org/10.1080/01904167.2016.1262409

    Article  CAS  Google Scholar 

  96. Maslennikova D, Nasyrova K, Chubukova O, Akimova E, Baymiev A, Blagova D, Ibragimov A, Lastochkina O et al (2022) Effects of Rhizobium leguminosarum Thy2 on the growth and tolerance to cadmium stress of wheat plants. Life 12:1675. https://doi.org/10.3390/life12101675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Patel M, Patel K, Al-Keridis LA, Alshammari N, Badraoui R, Elasbali AM, Al-Soud WA, Hassan MI, Yadav DK, Adnan M et al (2022) Cadmium-tolerant plant growth-promoting bacteria Curtobacterium oceanosedimentum improves growth attributes and strengthens antioxidant system in chili (Capsicum frutescens). Sustain 14:4335. https://doi.org/10.3390/su14074335

    Article  CAS  Google Scholar 

  98. Liaquat F, Munis MFH, Arif S (2020) Cd-tolerant SY-2 strain of Stenotrophomonas maltophilia: a potential PGPR, isolated from the Nanjing mining area in China. 3 Biotech 10:519. https://doi.org/10.1007/s13205-020-02524-7

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403–407. https://doi.org/10.1007/s00284-008-9099-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All authors are thankful to Professor In-charge, Rajiv Gandhi South Campus, Banaras Hindu University, Barkachha, Mirzapur, Uttar Pradesh, India, for providing the necessary facilities required for conducting the review work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualizations: AK, NK, AS, Writing—original draft, review and editing: DK, DKY, AV, NS. All authors have study and agreed the final version of the manuscript.

Corresponding author

Correspondence to Ashok Kumar.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethics Approval

Not applicable.

Consent to Participate

All the subjects signed the informed consent to participate in the study.

Consent for Publication

We, the undersigned, give our consent for the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumari, N., Singh, A. et al. The Effect of Cadmium Tolerant Plant Growth Promoting Rhizobacteria on Plant Growth Promotion and Phytoremediation: A Review. Curr Microbiol 80, 153 (2023). https://doi.org/10.1007/s00284-023-03267-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03267-3

Navigation