Skip to main content

Advertisement

Log in

Tentative Epidemiological Cut-Off Values and Distribution of Resistance Genes in Aquatic Pseudomonas Species Isolated from Rainbow Trout

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Epidemiological cut-off value (ECV) analysis for commonly used antimicrobials in aquaculture have not been established for many aquatic pathogens, including Pseudomonas. This study was the first to examine the categorization of 92 aquatic Pseudomonas isolates by calculating seven antimicrobials ECVs using two analytical methods: normalized resistance interpretation and ECOFFinder. Pseudomonas spp. isolates had decreased sensitivity to all antimicrobials examined except for doxycycline and ciprofloxacin. The PCR analysis of the 91 isolates of Pseudomonas spp. detected the tetracycline genes are predominant with the count of 41 genes, including tetA, tetC, tetD, tetM, tetS and tetH, following sulfonamide genes are in 21 isolates including sul1 and sul2, floR gene in 15 isolates and ermA gene in three isolates. Our findings provide an understanding of the antimicrobial categorization of Pseudomonas species, which are significant groups, subgroups, and species for aquaculture due to insufficiently defined breakpoints or cut-off values reported in CLSI and/or EUCAST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data of sampling and bacteria identification of the manuscript has been used from [5], which has been cited in the text. https://doi.org/10.1016/j.aquaculture.2021.736369

Code availability

ECV values were calculated using the NRI spreadsheet calculator for Microsoft Excel (http://www.bioscand.se/nri/). The NRI approach was utilized with permission from Bioscand AB, Taby, Sweden, the patent holder (European Patent No. 1383913, US Patent No. 7465559).

References

  1. Derome N, Gauthier J, Boutin S, Llewellyn M (2016) The rasputin effect: when commensals and symbionts become parasitic, 1st edn. Springer, Cham

    Google Scholar 

  2. Lopez JR, Dieguez AL, Doce A et al (2012) Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). Int J Syst Evol Microbiol 62:874–882. https://doi.org/10.1099/ijs.0.030601-0

    Article  CAS  PubMed  Google Scholar 

  3. Thomas J, Thanigaivel S, Vijayakumar S et al (2014) Pathogenecity of Pseudomonas aeruginosa in Oreochromis mossambicus and treatment using lime oil nanoemulsion. Colloids Surf B 116:372–377. https://doi.org/10.1016/j.colsurfb.2014.01.019

    Article  CAS  Google Scholar 

  4. Austin B, Austin DA (2016) Pseudomonads. Bacterial fish pathogens. Springer, New York, pp 475–498

    Chapter  Google Scholar 

  5. Duman M, Mulet M, Altun S et al (2021) The diversity of Pseudomonas species isolated from fish farms in Turkey. Aquaculture 535:736369. https://doi.org/10.1016/j.aquaculture.2021.736369

    Article  CAS  Google Scholar 

  6. Saticioglu IB, Mulet M, Duman M et al (2022) First occurrence and whole-genome comparison of Pseudomonas haemolytica isolated in farmed rainbow trout. Aquac Res 53:4472–4486. https://doi.org/10.1111/are.15944

    Article  CAS  Google Scholar 

  7. Testing EC on AS (2022) Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0, valid from 2022–0101. European Committee on Antimicrobial Susceptibility Testing, Vaxjo, Sweden. https://www.eucast.org/clinical_breakpoints. Accessed 2 Mar 2023

  8. CLSI (2014) Methods for Broth Dilution Susceptibility Testing of Bacteria Isolated From Aquatic Animals; Approved Guideline-Second Edition VET04-A2. Wayne PA. https://clsi.org. Accessed 2 Mar 2023

  9. CLSI (2014) Performance standards for antimicrobial susceptibility testing of bacteria isolated from aquatic animals; Second informational supplement. Wayne, PA. https://clsi.org. Accessed 2 Mar 2023

  10. Kronvall G (2010) Normalized resistance interpretation as a tool for establishing epidemiological MIC susceptibility breakpoints. J Clin Microbiol 48:4445–4452. https://doi.org/10.1128/JCM.01101-10

    Article  PubMed  PubMed Central  Google Scholar 

  11. Turnidge J, Kahlmeter G, Kronvall G (2006) Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin Microbiol Infect 12:418–425. https://doi.org/10.1111/j.1469-0691.2006.01377.x

    Article  CAS  PubMed  Google Scholar 

  12. Smith P, Endris R, Kronvall G et al (2016) Epidemiological cut-off values for Flavobacterium psychrophilum MIC data generated by a standard test protocol. J Fish Dis 39:143–154. https://doi.org/10.1111/jfd.12336

    Article  CAS  PubMed  Google Scholar 

  13. Silley P (2012) Susceptibility testing methods, resistance and breakpoints: what do these terms really mean? Revue Scientifique et Technique-OIE 31:33. https://doi.org/10.20506/rst.31.1.2097

  14. Duman M, Saticioglu IB, Altun S (2020) The determination of antimicrobial susceptibility by MIC and epidemiological cut-off values and the detection of resistance genes in Aeromonas species isolated from cultured fish. Lett Appl Microbiol 71:531–541. https://doi.org/10.1111/lam.13363

    Article  CAS  PubMed  Google Scholar 

  15. Lou Y, Liu H, Zhang Z, et al (2016) Mismatch between antimicrobial resistance phenotype and genotype of pathogenic Vibrio parahaemolyticus isolated from seafood. Food Control Complete 207–211. https://doi.org/10.1016/J.FOODCONT.2015.04.039

  16. Saticioglu IB, Duman M, Smith P, et al (2019) Antimicrobial resistance and resistance genes in Flavobacterium psychrophilum isolates from Turkey. Aquaculture. https://doi.org/10.1016/j.aquaculture.2019.734293

  17. Yano Y, Hamano K, Satomi M, et al (2014) Prevalence and antimicrobial susceptibility of Vibrio species related to food safety isolated from shrimp cultured at inland ponds in Thailand. Food Control Complete 30–36. https://doi.org/10.1016/J.FOODCONT.2013.09.019

  18. WHO (2022) WHO. https://www.who.int/news/item/04-07-2022-world-antimicrobial-awareness-week-2022-preventing-antimicrobial-resistance-together. Accessed 2 Mar 2023

  19. CDC (2019) Antibiotic resistance threats in the United States, 2019. Atlanta, GA:U.S. Department of Health and Human Services, CDC. https://doi.org/10.15620/cdc:82532.

  20. Preena PG, Swaminathan TR, Kumar VJR, Singh ISB (2020) Antimicrobial resistance in aquaculture: a crisis for concern. Biologia (Bratisl) 75:1497–1517. https://doi.org/10.2478/s11756-020-00456-4

    Article  Google Scholar 

  21. Shabana BM, Elkenany RM, Younis G (2022) Sequencing and multiple antimicrobial resistance of Pseudomonas fluorescens isolated from Nile tilapia fish in Egypt. Braz J Biol. https://doi.org/10.1590/1519-6984.257144

    Article  PubMed  Google Scholar 

  22. Akinbowale OL, Peng H, Grant P, Barton MD (2007) Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia. Int J Antimicrob Agents 30:177–182. https://doi.org/10.1016/j.ijantimicag.2007.03.012

    Article  CAS  PubMed  Google Scholar 

  23. Tan G, Xi Y, Yuan P et al (2019) Risk factors and antimicrobial resistance profiles of Pseudomonas putida infection in Central China, 2010–2017. Medicine. https://doi.org/10.1097/MD.0000000000017812

    Article  PubMed  PubMed Central  Google Scholar 

  24. Falodun OI, Ikusika EO (2020) Extended spectrum beta-lactamase and metallo beta-lactamase producing Pseudomonas species isolated from fish pond water in Ibadan, Nigeria. Int J Environ Stud 77:865–875. https://doi.org/10.1080/00207233.2019.1705044

    Article  CAS  Google Scholar 

  25. Lupo A, Haenni M, Madec J-Y (2018) Antimicrobial resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol Spectr 6:3–6. https://doi.org/10.1128/microbiolspec.ARBA-0007-2017

    Article  Google Scholar 

  26. Duman M, Saticioglu IB, Altun S (2019) Molecular characterization and antimicrobial resistance profile of fecal contaminants and spoilage bacteria that emerge in rainbow trout (Oncorhynchus mykiss) farms. Biosci Microbiota Food Health 38. https://doi.org/10.12938/bmfh.18-007

  27. Ruzauskas M, Klimiene I, Armalyte J, et al (2018) Composition and antimicrobial resistance profile of Gram‐negative microbiota prevalent in aquacultured fish. J Food Saf 38:e12447. https://doi.org/10.1111/jfs.12447

  28. Algammal AM, Mabrok M, Sivaramasamy E et al (2020) Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-72264-4

    Article  CAS  Google Scholar 

  29. Behzadi P, Gajdács M, Pallós P, et al (2022) Relationship between biofilm-formation, phenotypic virulence factors and antibiotic resistance in environmental Pseudomonas aeruginosa. Pathogens 11:1015. https://doi.org/10.26444/aaem/122682

  30. Thomassen GMB, Reiche T, Tennfjord CE, Mehli L (2022) Antibiotic resistance properties among Pseudomonas spp. Assoc Salmon Process Environ Microorganisms 10:1420. https://doi.org/10.3390/microorganisms10071420

    Article  CAS  Google Scholar 

  31. Poblete-Morales M, Irgang R, Henríquez-Núñez H et al (2013) Vibrio ordalii antimicrobial susceptibility testing—modified culture conditions required and laboratory-specific epidemiological cut-off values. Vet Microbiol 165:434–442. https://doi.org/10.1016/j.vetmic.2013.04.024

    Article  CAS  PubMed  Google Scholar 

  32. Van Vliet D, Loch TP, Smith P, Faisal M (2017) Antimicrobial susceptibilities of Flavobacterium psychrophilum isolates from the Great Lakes Basin, Michigan. Microb Drug Resist 23:791–798. https://doi.org/10.1089/mdr.2016.0103

    Article  CAS  PubMed  Google Scholar 

  33. Woo S-J, Kim M-S, Jeong M-G et al (2022) Establishment of epidemiological cut-off values and the distribution of resistance genes in Aeromonas hydrophila and Aeromonas veronii isolated from aquatic animals. Antibiotics 11:343. https://doi.org/10.3390/antibiotics11030343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duman M, Buyukekiz AG, Saticioglu IB, et al (2020) Epidemiology, genotypic diversity, and antimicrobial resistance of Lactococcus garvieae in farmed rainbow trout (Oncorhynchus mykiss. Iran J Fish Sci. https://doi.org/10.22092/ijfs.2018.117609

  35. Butiuc-Keul A, Carpa R, Podar D et al (2021) Antibiotic resistance in Pseudomonas spp. through the urban water cycle. Curr Microbiol 78:1227–1237. https://doi.org/10.1007/s00284-021-02389-w

    Article  CAS  PubMed  Google Scholar 

  36. Wistrand-Yuen E, Knopp M, Hjort K et al (2018) Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun 9:1–12. https://doi.org/10.1038/s41467-018-04059-1|

    Article  CAS  Google Scholar 

  37. Qian C, Liu H, Cao J et al (2021) Identification of floR variants associated with a novel Tn4371-like ıntegrative and conjugative element in clinical Pseudomonas aeruginosa ısolates. Front Cell Infect Microbiol 11:542. https://doi.org/10.3389/fcimb.2021.685068

    Article  CAS  Google Scholar 

  38. Fernández-Alarcón C, Miranda CD, Singer RS et al (2010) Detection of the floR gene in a diversity of florfenicol resistant Gram-negative bacilli from freshwater salmon farms in Chile. Zoonoses Public Health 57:181–188. https://doi.org/10.1111/j.1863-2378.2009.01243.x

    Article  CAS  PubMed  Google Scholar 

  39. Barnes ME, Brown ML (2011) A review of Flavobacterium psychrophilum biology, clinical signs, and bacterial cold water disease prevention and treat. Open Fish Sci J 4:40–48. https://doi.org/10.2174/1874401x01104010040

    Article  Google Scholar 

  40. Armstrong SM, Hargrave BT, Haya K (2005) Antibiotic use in finfish aquaculture: modes of action, environmental fate, and microbial resistance. Environ Effects Marine Finfish Aquac 341–357. https://doi.org/10.1007/b136017

  41. Guardabassi L, Courvalin P (2005) Modes of antimicrobial action and mechanisms of bacterial resistance. In: Antimicrobial resistance in bacteria of animal origin, pp 1–18. https://doi.org/10.1128/9781555817534.ch1

  42. Kenneth T (2008) Antimicrobial agents in the treatment of ınfectious disease. https://textbookofbacteriology.net/antimicrobial.html. Accessed 2 Mar 2023

  43. Papich MG, Jim ER (2017) Tetracycline antibiotics. In: Papich MG, Jim ER (eds) Veterinary pharmacology and therapeutics, 10th edn. Wiley, New York, p 858

    Google Scholar 

  44. Rigos G, Kogiannou D, Padrós F et al (2021) Best therapeutic practices for the use of antibacterial agents in finfish aquaculture: a particular view on European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata) in Mediterranean aquaculture. Rev Aquac 13:1285–1323. https://doi.org/10.1111/raq.12523

    Article  Google Scholar 

  45. van Hoek AHAM, Mevius D, Guerra B et al (2011) Acquired antibiotic resistance genes: an overview. Front Microbiol. https://doi.org/10.3389/fmicb.2011.00203

    Article  PubMed  PubMed Central  Google Scholar 

  46. Miranda CD, Tello A, Keen PL (2013) Mechanisms of antimicrobial resistance in finfish aquaculture environments. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00233

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cayci YT, Coban A, Gunaydin M (2014) Investigation of plasmid-mediated quinolone resistance in Pseudomonas aeruginosa clinical isolates. Indian J Med Microbiol 32:285–289. https://doi.org/10.4103/0255-0857.136567

    Article  PubMed  Google Scholar 

  48. Fu G, Peng J, Wang Y et al (2016) Pharmacokinetics and pharmacodynamics of sulfamethoxazole and trimethoprim in swimming crabs (Portunus trituberculatus) and in vitro antibacterial activity against Vibrio: PK / PD of SMZ-TMP in crabs and antibacterial activity against Vibrio. Environ Toxicol Pharmacol 46:45–54. https://doi.org/10.1016/j.etap.2016.06.029

    Article  CAS  PubMed  Google Scholar 

  49. Buchberger WW (2007) Novel analytical procedures for screening of drug residues in water, wastewater, sediment and sludge. Anal Chim Acta 593:129–139. https://doi.org/10.1016/j.aca.2007.05.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) [No: 118O420]. The project was conducted by Muhammed Duman.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection were performed by MD. Data analysis were performed by MD, SJW and IBS. The first draft of the manuscript was written by MD, SJW and IBS. The revision of the first draft was done by MD, SJW and IBS. The revisions were completed by MD, SJW, IBS and SA. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Soo-Ji Woo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duman, M., Woo, SJ., Altun, S. et al. Tentative Epidemiological Cut-Off Values and Distribution of Resistance Genes in Aquatic Pseudomonas Species Isolated from Rainbow Trout. Curr Microbiol 80, 157 (2023). https://doi.org/10.1007/s00284-023-03259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03259-3

Navigation