Skip to main content
Log in

Antibiotic Resistance in Pseudomonas spp. Through the Urban Water Cycle

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Selection and dissemination of resistant bacteria and antibiotic resistance genes (ARGs) require a deeper understanding since antibiotics are permanently released to the environment. The objective of this paper was to evaluate the phenotypic resistance of 499 isolates of Pseudomonas spp. from urban water sources, and the prevalence of 20 ARGs within those isolates. Resistance to penicillins, cephalosporins, carbapenems, quinolones, macrolides, and tetracyclines was mainly observed in the hospital effluent, municipal wastewater and river water downstream the city. Resistant strains were frequently identified as P. aeruginosa and P. putida. P. aeruginosa isolates were mostly resistant to cefepime, ceftazidime, imipenem, and gentamycin, while P. putida strains were especially resistant to piperacillin-tazobactam. ARGs such as blaTEM-1, blaSHV-1, blaPER-1, blaAmpC, blaVIM-1, PstS, qnrA, qnrB, ermB, tetA, tetB and tetC have been detected. The blaAmpC gene was found in P. aeruginosa, while blaTEM-1 and blaPER-1 genes were found in P. putida. Class 1 integron integrase gene was found in 6.81% of the Pseudomonas isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Meyer E, Gastmeier P, Deja M, Schwab F (2013) Antibiotic consumption and resistance: data from Europe and Germany. Int J Med Microbiol 303:388–395

    Article  PubMed  Google Scholar 

  2. Chao Y, Ma L, Yang Y, Ju F, Zhang X-X, Wu W-M, Zhang T (2013) Metagenomic analysis reveals significant changes of microbial compositions and protective functions during drinking water treatment. Sci Rep. https://doi.org/10.1038/srep03550

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gruber I, Heudorf U, Werner G, Pfeifer Y, Imirzalioglu C, Ackermann H, Brandt C, Besier S, Wichelhaus TA (2013) Multidrug-resistant bacteria in geriatric clinics, nursing homes, and ambulant care-prevalence and risk factors. Int J Med Microbiol 303:405–409

    Article  PubMed  Google Scholar 

  4. Martins VV, Zanetti MOB, Pitondo-Silva A, Stehling EG (2014) Aquatic environments polluted with antibiotics and heavy metals: a human health hazard. Environ Sci Pollut Res 21:5873–5878

    Article  CAS  Google Scholar 

  5. Nõlvak H, Truu M, Kanger K, Tampere M, Espenberg M, Loit E, Raave H, Truu J (2016) Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil. Sci Total Environ 562:678–689

    Article  PubMed  Google Scholar 

  6. Cai L, Ju F, Zhang T (2014) Tracking human sewage microbiome in a municipal wastewater treatment plant. Appl Microbiol Biotechnol 98:3317–3326

    Article  CAS  PubMed  Google Scholar 

  7. Szekeres E, Baricz A, Chiriac CM, Farkas A, Opris O, Soran ML, Andrei AS, Rudi K, Balcázar JL, Dragos N, Coman C (2017) Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ Pollut 225:304–315

    Article  CAS  PubMed  Google Scholar 

  8. Stalder T, Barraud O, Jove T, Casellas M, Gaschet M, Dagot C, Ploy M-C (2014) Quantitative and qualitative impact of hospital effluent on dissemination of the integron pool. ISME J 8:768–777

    Article  PubMed  Google Scholar 

  9. Borruso L, Harms K, Johnsen PJ, Nielsen KM, Brusetti L (2016) Distribution of class 1 integrons in a highly impacted catchment. Sci Total Environ 566–567:1588–1594

    Article  PubMed  Google Scholar 

  10. Li L-G, Yin X, Zhang T (2018) Tracking antibiotic resistance gene pollution from different sources using machine-learning classification. Microbiome 6:93

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nardelli M, Scalzo PM, Ramírez MS, Quiroga MP, Cassini MH, Centrón D (2012) Class 1 integrons in environments with different degrees of urbanization. PLoS ONE 6:7

    Google Scholar 

  12. Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu YG (2015) Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 9(6):1269–1279

    Article  CAS  PubMed  Google Scholar 

  13. Peix A, Ramírez-Bahenac M-H, Velázquez E (2018) The current status on the taxonomy of Pseudomonas revisited: an update. Infect Genet Evol 57:106–116

    Article  PubMed  Google Scholar 

  14. Dantas RCC, Silva RTE, Ferreira ML, Goncalves IR, Araújo BF, Campos PA, Royer S, Batistão DWDF, Gontijo-Filho PP, Ribas RM (2017) Molecular epidemiological survey of bacteremia by multidrug resistant Pseudomonas aeruginosa: the relevance of intrinsic resistance mechanisms. PLoS ONE 12:e0176774

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tsao LH, Hsin C-Y, Liu H-Y, Chuang H-C, Chen L-Y, Lee Y-J (2018) Risk factors for healthcare-associated infection caused by carbapenem-resistant Pseudomonas aeruginosa. J Microbiol Immunol Infect 51:359–366

    Article  PubMed  Google Scholar 

  16. Falup-Pecurariu O, Leibovitz E, Mercas A, Bleotu L, Zavarache C, Porat N, Dagan R, Greenberg D (2012) Pneumococcal acute otitis media in infants and children in central Romania, 2009–2011: microbiological characteristics and potential coverage by pneumococcal conjugate vaccines. Int J Infect Dis 17:e702–e706

    Article  Google Scholar 

  17. Cucu A, Nica M, Ceaușu E, Cioran N (2014) Antimicrobial resistance profile in infectious disease hospital intensive care unit. Farmacia 62:767–776

    Google Scholar 

  18. Slavcovici A, Maier C, Radulescu A (2015) Antimicrobial resistance of ESKAPE-pathogens in culture-positive pneumonia. Farmacia 63:201–205

    CAS  Google Scholar 

  19. Farkas A, Bocoș B, Butiuc-Keul A (2016) Antibiotic resistance and intI1 carriage in waterborne Enterobacteriaceae. Water Air Soil Pollut 227:251. https://doi.org/10.1007/s11270-016-2944-6

    Article  CAS  Google Scholar 

  20. Crăciunaş C, Butiuc-Keul A, Flonta M, Brad A, Sigarteu M (2010) Application of molecular techniques to the study of Pseudomonas aeruginosa clinical isolate in Cluj-Napoca, Romania. Ann Univ Oradea Biology 243–247

  21. Dortet L, Flonta M, Boudehen Y-M, Creton E, Bernabeu S, Vogel A, Naasa T (2015) Dissemination of Carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa in Romania. Antimicrob Agents Chemother 59:7100–7103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lixandru BE, Cotar AI, Straut M, Usein CR, Cristea D, Ciontea S, Tatu-Chitoiu D, Codita I, Rafila A, Nica M, Buzea M, Baicus A, Ghita MC, Nistor I, Tuchiluş C, Indreas M, Antohe F, Glasner C, Grundmann H, Jasir A, Damian M (2015) Carbapenemase-producing Klebsiella pneumoniae in Romania: a six-month survey. PLoS ONE. https://doi.org/10.1371/journal.pone.0143214

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kittinger C, Lipp M, Baumert R, Folli B, Koraimann G, Toplitsch D, Liebmann A, Grisold AJ, Farnleitner AH, Kirschner A, Zarfel G (2016) Antibiotic resistance patterns of Pseudomonas spp. isolated from the river Danube. Front Microbiol. https://doi.org/10.3389/fmicb.2016.00586

    Article  PubMed  PubMed Central  Google Scholar 

  24. https://www.numbeo.com/quality-of-life/country_result.jsp?country=Romania. Accessed 20.05.2020

  25. Widmer F, Seidler RJ, Gillevet PM, Watrud LS, Di Giovanni GD (1998) A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples. Appl Environ Microbiol 64:2545–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. EUCAST (2014) Antimicrobial susceptibility testing. EUCAST disk diffusion method. European Committee on Antimicrobial Susceptibility Testing, Stockholm

  27. Farkas A (2016) Antibiotic susceptibility testing by disc diffusion method. In: Coman C (ed) Methodological guide for monitoring antibiotics and antibiotic resistance in the environment. Accent Publisher, Cluj-Napoca, pp 253–276

    Google Scholar 

  28. EUCAST (2015) Breakpoint tables for interpretation of MICs and zone diameters. Version 5. European Committee on Antimicrobial Susceptibility Testing, Stockholm

  29. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  30. Vaz-Moreira I, Nunes OC, Manaia CM (2012) Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Sci Total Environ 426:366–374

    Article  CAS  PubMed  Google Scholar 

  31. González F, Araque M (2013) Association of transferable quinolone resistance determinant qnrB19 with extended-spectrum β-lactamases in Salmonella Give and Salmonella Heidelberg in Venezuela. J Microbiol. https://doi.org/10.1155/2013/628185

    Article  Google Scholar 

  32. Mokracka J, Koczura R, Kaznowski A (2012) Multiresistant Enterobacteriaceae with class 1 and class 2 integrons in a municipal wastewater treatment plant. Water Res 46:3353–3363

    Article  CAS  PubMed  Google Scholar 

  33. Zaborina O, Holbrook C, Chen Y, Long J, Zaborin A, Morozova I, Fernandez H, Wang Y, Turner JR, Alverdy JC (2008) Structure-function aspects of PstS in multi-drug-resistant Pseudomonas aeruginosa. PLoS Pathog 4(2):e43. https://doi.org/10.1371/journal.ppat.0040043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poole K (2005) Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:479–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Poole K (2011) Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. CLSI (2015) Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement M100–S25. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  37. EUCAST (2016) EUCAST Expert Rules Version 3.1. European Committee on Antimicrobial Susceptibility Testing, Stockholm

  38. Farkas A, Crăciunaş C, Chiriac C, Szekeres E, Coman C, Butiuc-Keul A (2016) Exploring the role of coliform bacteria in class 1 integron carriage and biofilm formation during drinking water treatment. Microb Ecol 72(4):773–782

    Article  CAS  PubMed  Google Scholar 

  39. Figueira V, Serra EA, Vaz-Moreira I, Brandão TR, Manaia CM (2012) Comparison of ubiquitous antibiotic-resistant Enterobacteriaceae populations isolated from wastewaters, surface waters and drinking waters. J Water Health 10:1–10

    Article  CAS  PubMed  Google Scholar 

  40. Koczura R, Mokracka J, Jabłońska L, Gozdecka E, Kubek M, Kazonowksi A (2012) Antimicrobial resistance of integron-harboring Escherichia coli isolates from clinical samples, wastewater treatment plant and river water. Sci Total Environ 414:680–685

    Article  CAS  PubMed  Google Scholar 

  41. Wellington EMH, Boxall ABA, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W, Thomas CM, Williams AP (2013) The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect Dis 13:155–165

    Article  CAS  PubMed  Google Scholar 

  42. Ben W, Wang J, Cao R, Yang M, Zhang Y, Qiang Z (2017) Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere 172:392–398

    Article  CAS  PubMed  Google Scholar 

  43. Stokes HW, Gillings MR (2011) Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 35:790–819

    Article  CAS  PubMed  Google Scholar 

  44. Lim CLL, Chuaa AQ, Teoa JQM, Caia Y, Leea W, Lay-Hoon Kwaa A (2018) Importance of control groups when delineating antibiotic use as a risk factor for carbapenem resistance, extreme-drug resistance, and pan-drug resistance in Acinetobacter baumannii and Pseudomonas aeruginosa: a systematic review and meta-analysis. Int J Infect Dis 76:48–57

    Article  PubMed  Google Scholar 

  45. WHO (2014) World Health Organization. Antimicrobial Resistance: Global report on surveillance. WHO Press, Geneva

    Google Scholar 

  46. Alexopoulos A, Voidarou C, Stefani C, Papadopoulos I, Vavias S, Tsiotsias A, Kalkani E, Charvalos E, Bezirtzoglou E (2006) Antibiotic resistance profiles and integrons in Enterobacteriaceae from the riverside of Evros-Ardas with respect to chemical and waste pollution. Microb Ecol Health Dis 18:170–176

    CAS  Google Scholar 

  47. Guo X, Xia R, Han N, Xu H (2011) Genetic diversity analyses of class 1 integrons and their associated antimicrobial resistance genes in Enterobacteriaceae strains recovered from aquatic habitats in China. Lett Appl Microbiol 52:667–675

    Article  CAS  PubMed  Google Scholar 

  48. Cho CH, Lee SB (2018) Comparison of clinical characteristics and antibiotic susceptibility between Pseudomonas aeruginosa and P. putida keratitis at a tertiary referral center: a retrospective study. BMC Ophthalmol 18:204

    Article  PubMed  PubMed Central  Google Scholar 

  49. Finklea JD, Hollaway R, Lowe K, Lee F, Le J, Jain R (2018) Ceftolozane/tazobactam sensitivity patterns in Pseudomonas aeruginosa isolates recovered from sputum of cystic fibrosis patients. Diagn Microbiol Infect Dis 92:75–77

    Article  CAS  PubMed  Google Scholar 

  50. European Commission (EC) (2000) Directive 200/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J EC LI 372(43):1e73

Download references

Acknowledgements

This work was supported by the EnviroAMR project, Grant Number 471, 3499/20.05.2015, financed through the EEA 2009-2014 Financial Mechanism under the RO04 472 program—Reduction of hazardous substances, the Core programme and the Grant of the Ministry of Research and Innovation, Contract No. 22PFE / 2018. ES was also supported through the Core programme PN2019–2022 - BIODIVERS 3, Grant 25 N/2019 - BIOSERV.

Author information

Authors and Affiliations

Authors

Contributions

ABK: conception and design of the study, ARG analysis, and manuscript writing. AF: conception and design of the study, water sampling, bacterial isolation and microbiological testing, phenotypic analysis of bacterial resistance, statistical analysis, and manuscript editing. RC: antimicrobial susceptibility testing. DP: validation of ARG sequences, bioinformatics analysis. ES: molecular identification of isolates, validation of 16S rRNA sequences, bioinformatics analysis. VM: water sampling, antimicrobial susceptibility testing. DI: validation of ARG sequences, bioinformatic analysis.

Corresponding author

Correspondence to Anca Farkas.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butiuc-Keul, A., Carpa, R., Podar, D. et al. Antibiotic Resistance in Pseudomonas spp. Through the Urban Water Cycle. Curr Microbiol 78, 1227–1237 (2021). https://doi.org/10.1007/s00284-021-02389-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02389-w

Navigation