Skip to main content
Log in

Evaluation of Bacillus subtilis as a Tool for Biodegrading Diesel Oil and Gasoline in Experimentally Contaminated Water and Soil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Benzene, toluene, ethylbenzene and xylene (BTEX) are toxic petroleum hydrocarbons pollutants that can affect the central nervous system and even cause cancer. For that reason, studies regarding BTEX degradation are extremely important. Our study aimed evaluate the microorganism Bacillus subtilis as a tool for degrading petroleum hydrocarbons pollutants. Assays were run utilizing water or soil distinctly contaminated with gasoline and diesel oil, with and without B. subtilis. The ability of B. subtilis to degrade hydrophobic compounds was analyzed by Fourier-Transform Infrared Spectroscopy (FTIR) and gas chromatography. The FTIR results indicated, for water assays, that B. subtilis utilized the gasoline and diesel oil to produce the biosurfactant, and, as a consequence, performed a biodegradation process. In the same way, for soil assay, B. subtilis biodegraded the diesel oil. The gas chromatography results indicated, for gasoline in soil assay, the B. subtilis removed BTEX. So, B. subtilis was capable of degrading BTEX, producing biosurfactant and it can also be used for other industrial applications. Bioremediation can be an efficient, economical, and versatile alternative for BTEX contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author in Dropbox file.

Code Availability

C:\Users\ajoza\Dropbox\mais uma pasta ANgela e Denise\Artigo Gasolina (Paulo).

References

  1. Márquez A, Freytez E, Maldonado J, Guevara E, Pérez S, Buroz E (2022) Soil and groundwater remediation proposal for hydrocarbons in a tropical aquifer. J Appl Water Eng Res. https://doi.org/10.1080/23249676.2022.2089246

    Article  Google Scholar 

  2. Moradi M et al (2019) Exposure to BTEX in beauty salons: biomonitoring, urinary excretion, clinical symptoms, and health risk assessments. Environ Monit Assess 191:286

    Article  CAS  PubMed  Google Scholar 

  3. Li Y, Hu T, Chen R, Xiang R, Wang Q, Zeng Y, He C (2020) Novel thiol-functionalized covalent organic framework as adsorbent for simultaneous removal of BTEX and mercury (II) from water. Chem Eng J 398:125566. https://doi.org/10.1016/j.cej.2020.125566

    Article  CAS  Google Scholar 

  4. Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286. https://doi.org/10.1016/j.biortech.2016.10.037

    Article  CAS  PubMed  Google Scholar 

  5. Silva CM, Corrêa SM, Arbilla G (2020) Preliminary study of ambiente levels and exposure to BTEX in the Rio de Janeiro Olympic Metropolitan Region, Brazil. Bull Environ Contam Toxicol 104:786–791

    Article  PubMed  Google Scholar 

  6. Lee Y, Lee Y, Jeon CO (2019) Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci Rep 9:860. https://doi.org/10.1038/s41598-018-36165-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mishra S, Jyot J, Kuhad RC, Lal B (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67:1675–1681. https://doi.org/10.1128/AEM.67.4.1675-1681.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549. https://doi.org/10.1128/mmbr.67.4.503-549.2003

    Article  PubMed  PubMed Central  Google Scholar 

  9. Su Y, Liu C, Fang H et al (2020) Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact 19:173. https://doi.org/10.1186/s12934-020-01436-8

    Article  PubMed  PubMed Central  Google Scholar 

  10. Karpov DS, Domashin AI, Kotlov MI, Osipova PG, Kiseleva SV, Seregina TA, Goncharenko AV, Mironov AS, Karpov VL, Poddubko SV (2020) Biotechnological potential of the Bacillus subtilis 20 strain. Mol Biol 54:119–127. https://doi.org/10.1134/S0026893320010082

    Article  CAS  Google Scholar 

  11. Kovács ÁT (2019) Bacillus subtilis. Trends Microbiol 27(8):724–725. https://doi.org/10.1016/j.tim.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  12. Al-Dhabi NA, Esmail GA, Valan Arasu M (2020) Enhanced production of biosurfactant from Bacillus subtilis strain Al-Dhabi-130 under solid-state fermentation using date molasses from Saudi Arabia for bioremediation of crude-oil-contaminated soils. Int J Environ Res Public Health 17:1–20. https://doi.org/10.3390/ijerph17228446

    Article  CAS  Google Scholar 

  13. Hsieh H, Lin C, Hsu S, Stewart GC (2020) A Bacillus spore-based display system for bioremediation of atrazine. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01230-20

    Article  PubMed  PubMed Central  Google Scholar 

  14. Oliveira RA, Tardelli ER, Jozala AF, Grotto D (2019) Evaluation of the 17-α-ethinyl estradiol sorption capacity in soil. Water Air Soil Pollut 230:85. https://doi.org/10.1007/s11270-019-4136-7

    Article  CAS  Google Scholar 

  15. Ponte Rocha MV, Gomes Barreto RV, Melo VMM, Barros Gonçalves LR (2009) Evaluation of cashew apple juice for surfactin production by Bacillus subtilis LAMI008. Appl Biochem Biotechnol 155:63–75. https://doi.org/10.1007/s12010-008-8459-x

    Article  CAS  Google Scholar 

  16. Pereira JFB, Gudiña EJ, Costa R, Vitorino R, Teixeira JA, Coutinho JAP, Rodrigues LR (2013) Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111:259–268. https://doi.org/10.1016/j.fuel.2013.04.040

    Article  CAS  Google Scholar 

  17. Pasadakis N, Kardamakis AA (2006) Identifying constituents in commercial gasoline using fourier transform-infrared spectroscopy and independent component analysis. Anal Chim Acta 578:250–255. https://doi.org/10.1016/j.aca.2006.06.072

    Article  CAS  PubMed  Google Scholar 

  18. Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15:93–120. https://doi.org/10.1159/000121324

    Article  CAS  PubMed  Google Scholar 

  19. Harms MPM, Wesseling KH, Pott F, Jenstrup M, Van Goudoever J, Secher N, Van Lieshout JJ (1999) Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress. Clin Sci 97:291–301. https://doi.org/10.1042/cs0970291

    Article  CAS  Google Scholar 

  20. Weelink SAB, van Eekert MHA, Stams AJM (2010) Degradation of BTEX by anaerobic bacteria: physiology and application. Rev Environ Sci Bio/Technol 9:359–385. https://doi.org/10.1007/s11157-010-9219-2

    Article  CAS  Google Scholar 

  21. Varadavenkatesan T, Murty VR (2013) Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery. ISRN Microbiol 2013:1–8. https://doi.org/10.1155/2013/621519

    Article  CAS  Google Scholar 

  22. Joshi S, Bharucha C, Desai AJ (2008) Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresour Technol 99:4603–4608. https://doi.org/10.1016/j.biortech.2007.07.030

    Article  CAS  PubMed  Google Scholar 

  23. Sousa M, Dantas IT, Feitosa FX, Alencar AEV, Soares SA, Melo VMM, Gonçalves LRB, Sant’ana HB (2014) Performance of a biosurfactant produced by Bacillus subtilis LAMI005 on the formation of oil/biosurfactant/water emulsion: study of the phase behaviour of emulsified systems. Braz J Chem Eng 31:613–623. https://doi.org/10.1590/0104-6632.20140313s00002766

    Article  Google Scholar 

  24. Yadav SPR, Saravanan CG, Kannan M (2015) Influence of injection timing on DI diesel engine characteristics fueled with waste transformer oil. Alexandria Eng J 54:881–888. https://doi.org/10.1016/j.aej.2015.07.008

    Article  Google Scholar 

  25. Qasim M, Ansari TM, Hussain M (2017) Combustion, performance, and emission evaluation of a diesel engine with biodiesel like fuel blends derived from a mixture of Pakistani waste canola and waste transformer oils. Energies 10:1023. https://doi.org/10.3390/en10071023

    Article  CAS  Google Scholar 

  26. Chandra S, Sharma R, Singh K, Sharma A (2013) Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol 63:417–431. https://doi.org/10.1007/s13213-012-0543-3

    Article  CAS  Google Scholar 

  27. Abbasian F, Lockington R, Mallavarapu M, Naidu RA (2015) Comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol 176:670–699. https://doi.org/10.1007/s12010-015-1603-5

    Article  CAS  PubMed  Google Scholar 

  28. Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier Alasan. Appl Environ Microbiol 65:2697–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mihály J, Sterkel S, Ortner HM, Kocsis L, Hajba L, Furdyga É, Minka J (2006) FTIR and FT-Raman spectroscopic study on polymer based high pressure digestion vessels. Croat Chem Acta 79:497–501

    Google Scholar 

  30. Kannan S (2014) FT-IR and EDS analysis of the seaweeds Sargassum wightii (Brown Algae) and Gracilaria corticata (Red Algae). Int J Curr Microbiol App Sci 3:341–351

    Google Scholar 

  31. Baran EJ, Viera I, Torre MH (2007) Vibrational spectra of the Cu(II) complexes of l-asparagine and l-glutamine. Spectrochim Acta Part A 66:114–117. https://doi.org/10.1016/j.saa.2006.01.052

    Article  CAS  Google Scholar 

  32. Mohan H, Lim J, Lee S, Jang JS, Park Y, Seralathan K, Oh B (2020) Enhanced visible light photocatalysis with E-waste-based V2O5/zinc–ferrite: BTEX degradation and mechanism. J Chem Technol Biotechnol 95:2842–2852. https://doi.org/10.1002/jctb.6442

    Article  CAS  Google Scholar 

  33. Montagnolli RN, Lopes PRM, Bidoia ED (2015) Screening the toxicity and biodegradability of petroleum hydrocarbons by a rapid colorimetric method. Arch Environ Contam Toxicol 68:342–353. https://doi.org/10.1007/s00244-014-0112-9

    Article  CAS  PubMed  Google Scholar 

  34. Ezeji EU, Anyanwu BN, Onyeze GOC, Ibekwe VI (2005) Studies on the utilization of petroleum hydrocarbon by micro organism isolated from oil contaminated soil. Int J Nat Appl Sci 1(2):122–128

    Google Scholar 

  35. Marin JA, Hernandez T, Garcia C (2005) Bioremediation of oil refinery sludge by landfarming in semiarid conditions: Influence on soil microbial activity. Environ Res 98:185–195. https://doi.org/10.1016/j.envres.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  36. Chaîneau CH, Yepremian C, Vidalie JF, Ducreux J, Ballerini D (2003) Bioremediation of a crude oil-polluted soil: biodegradation, leaching and toxicity assessments. Water Air Soil Pollut 144:419–440. https://doi.org/10.1023/A:1022935600698

    Article  Google Scholar 

  37. Ahtiainen J, Valo R, Järvinen M, Joutti A (2002) Microbial toxicity tests and chemical analysis as monitoring parameters at composting of creosote-contaminated soil. Ecotoxicol Environ Saf 53:323–329. https://doi.org/10.1006/eesa.2002.2225

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge financial support from University of Sorocaba (Uniso) by the Undergraduate Research Program (PROBIC/UNISO). Coordination for Higher Level Graduate Improvements (CAPES/Brazil, finance code 001), National Council for Scientific and Technological Development (CNPq/Brazil).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by AFJ and DG; methodology was contributed by PS, NDM., MVC and AFJ; writing—original draft preparation was contributed by PS, VSS, NRCM, FGL and AFJ; writing—review and editing was contributed by DG and AFJ; study supervision was contributed by AFJ. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Angela F. Jozala.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Consent to Participate and Consent for Publication

All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmazo, P., De Marco, N., Soeiro, V.S. et al. Evaluation of Bacillus subtilis as a Tool for Biodegrading Diesel Oil and Gasoline in Experimentally Contaminated Water and Soil. Curr Microbiol 80, 94 (2023). https://doi.org/10.1007/s00284-022-03175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03175-y

Navigation