Skip to main content
Log in

Genomic Characterization of Twelve Lytic Bacteriophages Infecting Midgut Bacteria of Aedes aegypti

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Mosquito-borne diseases such as malaria and dengue are global severe public health threats. Due to the lack of efficient control methods, alternative approaches to decreasing arboviral transmitted diseases are prioritized to reduce morbidity and mortality in every endemic region. Mosquito midgut bacteria play an essential role in physiological development, fitness, and the arthropods´ vectorial capacity. Bacteriophages are viruses that infect bacteria and are considered a promising biocontrol method by eliminating midgut microbiota that plays an essential role in mosquitoes´ health. Here, we isolate and identify 22 bacteria from mosquito´s midgut belonging to the genera Mesobacillus, Enterobacter, Klebsiella, Microbacterium, Micrococcus, Pantoea, Serratia, and Staphylococcus, mainly. Twelve phages with lytic activity against Enterobacter, Klebsiella, and Pantoea were also isolated. All 12 phages showed a double-stranded DNA genome, ranging from 36,790 to 149,913 bp, and were taxonomically classified as members of the Drexlerviridae family, Molineuxvirinae, Studiervirinae, and Vequintavirinae subfamilies. Open reading frames associated with phage structure, packing, host lysis, DNA metabolism, and additional functions were predicted in all 12 phage genomes, while tRNAs were predicted in five phage genomes. In addition, the life cycle was predicted as virulent for the 12 phages, and no antibiotic resistance, virulence, allergenic, or lysogenic genes were found in either genome. These findings suggest that the 12 phages have biocontrol potentials; however, it is necessary to elucidate specific bacterial host’s roles and then the phages' ability to serve as effective vector control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The nucleotide sequence data reported here are available in the GenBank database under the accession numbers OL744209-OL744220 (phage genomes), and OP492053-OP492074 (Bacteria 16S rRNA seq).

Code Availability

Not applicable.

References

  1. WHO (2020) Vector-borne Diseases. Accesed 08 February 2022.

  2. Garza M, Feria-Arrollo TP, Casillas EA, Sánchez-Cordero V, Rivaldi CL (2014) Projected future distributions of vectors of Trypanosoma cruzi in North America under climate change scenarios. PLOS Neglect Trop D 8(5):e2818. https://doi.org/10.1371/journal.pntd.0002818

    Article  Google Scholar 

  3. WHO (2019) Enfermedades transmitidas por vectores. Accesed 09 October 2021.

  4. Poupardin R, Srisukontarat W, Yunta C, Ranson H (2014) Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti. PLOS Neglect Trop D 8(3):e2743. https://doi.org/10.1371/journal.pntd.0002743

    Article  CAS  Google Scholar 

  5. Fauci AS, Morens DM (2016) Zika virus in the americas—yet another arbovirus threat. New Engl J Med 374:601–604. https://doi.org/10.1056/NEJMp1600297

    Article  PubMed  Google Scholar 

  6. Guégan M, Zouache K, Démichel C, Minard G, Van VT, Potier P, Mavingui P, Moro CV (2018) The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome 6:49. https://doi.org/10.1186/s40168-018-0435-2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jones RT, Ant TH, Cameron MM, Logan JG (2020) Novel control strategies for mosquito-borne diseases. Philos T R Soc B 376:20190802. https://doi.org/10.1098/rstb.2019.0802

    Article  CAS  Google Scholar 

  8. Coatsworth H, Caicedo PA, Van-Rossum T, Ocampo CB, Lowenberger C (2018) The composition of midgut bacteria in Aedes aegypti (Diptera: Culicidae) that are naturally susceptible or refractory to dengue viruses. J Insect Sci 18(6):12. https://doi.org/10.1093/jisesa/iey118

    Article  CAS  PubMed Central  Google Scholar 

  9. Dada N, Jupatanakul N, Minard G et al (2021) Considerations for mosquito microbiome research from the Mosquito Microbiome Consortium. Microbiome 9:36. https://doi.org/10.1186/s40168-020-00987-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hill CL, Sharma A, Shouche Y, Severson DW (2014) Dynamics of midgut microflora and dengue virus impact on life history traits in Aedes aegypti. Acta Trop 140:151–157. https://doi.org/10.1016/j.actatropica.2014.07.015

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ramirez JL, Souza-Neto J, Torres-Cosme R, Rovira J, Ortiz A, Pascale JM, Dimopoulos G (2012) Reciprocal tripartite interactions between the Aedes aegypti midgut Microbiota, innate immune system and dengue virus influences vector competence. PLOS Neglect Trop D 6(3):e1561

    Article  Google Scholar 

  12. Apte-Deshpande A, Paingankar M, Gokhale MD, Deobagkar DN (2012) Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus. PLoS ONE 7:e40401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ackermann HW (2009) Phage classification and characterization. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: Methods and Protocols: Isolation, Characterization, and Interactions. HumanPress, New York

    Google Scholar 

  14. McCallin S, Sacher JC, Zheng J, Chan BK (2019) Current state of compassionate phage therapy. Viruses-Basel 11(4):343. https://doi.org/10.3390/v11040343

    Article  Google Scholar 

  15. Zhang X, Wang S, Li T, Zhang Q, Zhang R, Zhang Z (2021) Bacteriophage: a useful tool for studying gut bacteria function of housefly larvae, musca domestica. Microbiol Spectr 9:e00599-e621. https://doi.org/10.1128/Spectrum.00599-21

    Article  CAS  PubMed Central  Google Scholar 

  16. Rueda LM (2004) Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with Dengue virus transmission. Zootaxa 589:1–60

    Article  Google Scholar 

  17. Coleman J, Juhn J, James AA (2007) Dissection of midgut and salivary glands from Ae. aegypti mosquitoes. J Vis Exp. 5:228. https://doi.org/10.3791/228

    Article  Google Scholar 

  18. Van Twest R, Kropisnki AM (2009) Bacteriophage enrichment from water and soil. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: Methods and Protocols Isolation, Characterization, and Interactions. HumanPress, New York

    Google Scholar 

  19. Carey-Smith GV, Billington C, Cornelius AJ, Hudson JA, Heinemann JA (2006) Isolation and characterization of bacteriophages infecting Salmonella spp. FEMS Microbiol Lett 258(2):182–186. https://doi.org/10.1111/j.1574-6968.2006.00217.x

    Article  CAS  PubMed  Google Scholar 

  20. Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual Cold Spring Harbor Laboratory Press

    Google Scholar 

  21. Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Compu Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  Google Scholar 

  23. McNair K, Zhou C, Dinsdale EA, Souza B, Edwards RA (2019) PHANOTATE: a novel approach to gene identification in phage genomes. Bioinformatics 35(22):4537–4542. https://doi.org/10.1093/bioinformatics/btz265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA III, Stevens R, Vonstein V, Wattam AR, Xia F (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci rep 5(1):1–6. https://doi.org/10.1038/srep08365

    Article  CAS  Google Scholar 

  25. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44(W1):W54–W57. https://doi.org/10.1093/nar/gkw413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32(1):11–16. https://doi.org/10.1093/nar/gkh152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sayers S, Li L, Ong E, Deng S, Fu G, Lin Y, Yang B, Zhang S, Fa Z, Zhao B, Xiang Z, Li Y, Zhao XM, Olszewski MA, Chen L, He Y (2019) Victors: a web-based knowledge base of virulence factors in human and animal pathogens. Nucleic Acids Res 47(D1):D693–D700. https://doi.org/10.1093/nar/gky999

    Article  CAS  PubMed  Google Scholar 

  28. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33:D325-328. https://doi.org/10.1093/nar/gki008

    Article  CAS  PubMed  Google Scholar 

  29. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L, Kalan L, King AM, Koteva K, Morar M, Mulvey MR, O’Brien JS, Pawlowski AC, Piddock LJV, Spanogiannopoulos P, Sutherland AD, Tang I, Taylor PL, Thaker M, Wang W, Yan M, Yu T, Wright GD (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chem 57(7):3348–3357. https://doi.org/10.1128/AAC.00419-13

    Article  CAS  Google Scholar 

  30. Tynecki P, Guziński A, Kazimierczak J, Jadczuk M, Dastych J, Onisko A (2020) PhageAI—bacteriophage life cycle recognition with machine learning and natural language processing. Biorxiv. https://doi.org/10.1101/2020.07.11.198606

    Article  Google Scholar 

  31. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27(7):1009–1010. https://doi.org/10.1093/bioinformatics/btr039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moraru C, Varsani A, Kropinski AM (2020) VIRIDIC-A novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses-Basel 12(11):1268. https://doi.org/10.3390/v12111268

    Article  CAS  Google Scholar 

  33. Adriaenssens E, Brister JR (2017) How to name and classify your phage: an informal guide. Viruses-Basel 9(4):70. https://doi.org/10.3390/v9040070

    Article  Google Scholar 

  34. Turner D, Kropinski AM, Adriaenssens EM (2021) A roadmap for genome-based phage taxonomy. Viruses-Basel 13(3):506. https://doi.org/10.3390/v1303050

    Article  CAS  Google Scholar 

  35. Coon KL, Brown MR, Strand MR (2016) Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasite Vector 9:375. https://doi.org/10.1186/s13071-016-1660-9

    Article  CAS  Google Scholar 

  36. Yadav KK, Datta S, Naglot A, Bora A, Hmuaka V, Bhagyawant S, Gogoi HK, Veer V, Raju PS (2016) Diversity of cultivable midgut microbiota at different stages of the asian tiger mosquito, Aedes albopictus from Tezpur. India PLOS ONE 11(12):e0167409. https://doi.org/10.1371/journal.pone.0167409

    Article  CAS  PubMed  Google Scholar 

  37. Gaio AO, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PF, Lemos FJ (2011) Contribution of midgut bacteria to blood digestion and egg production in Aaedes aegypti (diptera: culicidae) (L.). Parasite Vector 14(4):105. https://doi.org/10.1186/1756-3305-4-105

    Article  Google Scholar 

  38. Valiente-Moro C, Tran FH, Nantenaina-Raharimalala F, Ravelonandro P, Mavingui P (2013) Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiol 13:70. https://doi.org/10.1186/1471-2180-13-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Adriaenssens EM, Sullivan MB, Knezevic P et al (2020) Taxonomy of prokaryotic viruses: 2018–2019 update from the ICTV bacterial and archaeal viruses subcommittee. Arch Virol 165:1253–1260. https://doi.org/10.1007/s00705-020-04577-8

    Article  CAS  PubMed  Google Scholar 

  40. German GJ, Misra R, Kropinski AM (2006) The T1-Like Bacteriophages. In: Bacteriophages T (ed) R. Oxford University Press Calendar, Oxford, pp 211–224

    Google Scholar 

  41. Tabassum R, Shafique M, Khawaja KA, Alvi IA, Rehman Y, Sheik CS, Abbas Z, Rehman S (2018) Complete genome analysis of a Siphoviridae phage TSK1 showing biofilm removal potential against Klebsiella pneumoniae. Sci Rep 8:17904. https://doi.org/10.1038/s41598-018-36229-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang I, Smith DL, Young R (2000) Holins: The protein clocks of bacteriophage infections. Annu Rev Microbiol 54:799–825. https://doi.org/10.1146/annurev.micro.54.1.799

    Article  CAS  PubMed  Google Scholar 

  43. Kongari R, Snowden J, Berry JD, Young R (2018) Localization and regulation of the T1 unimolecular spanin. J Virol 92(22):e00380-e418. https://doi.org/10.1128/JVI.00380-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Turner D, Kropinski AM, Alfernas-Zerbini P, Buttimer C, Lavigne R, Bister JR et al (2019) Create one new family (Autographiviridae) including nine subfamilies and 132 genera in the order Caudovirales. Microb Biotechnol 13:1428–1445

    Google Scholar 

  45. Estrada-Bonilla B, Costa AR, van den Berg DF, van Rossum T, Hagedoorn S, Walinga H, Xiao M, Song W, Haas PJ, Nobrega FL, Brouns SJJ (2021) Genomic characterization of four novel bacteriophages infecting the clinical pathogen Klebsiella pneumoniae. DNA Res 28(4):dsab013. https://doi.org/10.1093/dnares/dsab013

    Article  CAS  PubMed Central  Google Scholar 

  46. Roberts GA, Stephanou AS, Kanwar N, Dawson A, Cooper LP, Chen K, Nutley M, Cooper A, Blakely GW, Dryden DTF (2012) Exploring the DNA mimicry of the Ocr protein of phage T7. Nucleic Acids Res 40(16):8129–8143. https://doi.org/10.1093/nar/gks516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leptihn S, Gottschalk J, Kuhn A (2016) T7 ejectosome assembly: a story unfolds. Bacteriophage 6(1):e1128513. https://doi.org/10.1080/21597081.2015.1128513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kondo N, Nakagawa N, Ebihara A, Chen L, Liu ZJ, Wang BC, Yokoyama S, Kuramitsu S, Masui R (2007) Structure of dNTP-inducible dNTP triphosphohydrolase: insight into broad specificity for dNTPs and triphosphohydrolase-type hydrolysis. Acta Crystallogr D D63:230–239. https://doi.org/10.1107/S0907444906049262

    Article  CAS  Google Scholar 

  49. Verchot-Lubicz J, Carr JP (2008) Viral suppressors of gene silencing. Encycl Virol. https://doi.org/10.1016/B978-012374410-4.00718-4

    Article  Google Scholar 

  50. Amundsen SK, Spicer T, Karabulut AC, Londoño LM, Eberhart C, Fernandez-Vega V, Bannister TD, Hodder P, Smith GR (2012) Small-molecule inhibitors of bacterial AddAB and RecBCD helicase-nuclease DNA repair enzymes. ACS Chem Biol 7(5):879–891. https://doi.org/10.1021/cb300018x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sofy AR, El-Dougdoug NK, Refaey EE, Dawoud RA, Hmed AA (2021) Characterization and full genome sequence of novel KPP-5 lytic phage against Klebsiella pneumoniae responsible for recalcitrant infection. Biomedicines 9(4):342. https://doi.org/10.3390/biomedicines9040342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Buttimer C, Lynch C, Hendrix H, Neve H, Noben JP, Lavigne R, Coffey A (2020) Isolation and characterization of Pectobacterium phage vB_PatM_CB7: new insights into the genus Certrevirus. Antibiotics-Basel 9(6):352. https://doi.org/10.3390/antibiotics9060352

    Article  CAS  PubMed Central  Google Scholar 

  53. Oliveira H, São-José C, Azeredo J (2018) Phage-derived peptidoglycan degrading enzymes: challenges and future prospects for in vivo therapy. Viruses-Basel 10(6):292. https://doi.org/10.3390/v10060292

    Article  CAS  Google Scholar 

  54. Lee HJ, Kim WI, Kwon YC, Cha KE, Kim M, Myung H (2016) A newly isolated bacteriophage, PBES 02 Infecting Cronobacter sakazakii. J microbiol biotechn 26(9):1629–1635. https://doi.org/10.4014/jmb.1605.05020

    Article  CAS  Google Scholar 

  55. Shin H, Lee JH, Kim Y, Ryu S (2012) Complete genome sequence of Cronobacter sakazakii bacteriophage CR3. J Virol 86(11):6367–6368. https://doi.org/10.1128/JVI.00636-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vörtler S, Mörl M (2010) tRNA-nucleotidyltransferases: highly unusual RNA polymerases with vital functions. FEBS Lett 584(2):297–302. https://doi.org/10.1016/j.febslet.2009.10.078

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank MSc. Eduardo Heriberto López Guerrero for his technical assistance.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Contributions

OL-C: Conceptualization, Methodology, Writing—Original draft, Formal analysis. JPG-G: Conceptualization, Formal analysis, Methodology, Visualization. JRA-S: Formal analysis, Methodology, Data Curation. BG-G: Methodology, Validation, Writing—review & editing. EHT-M: Methodology, Writing—review & editing. JAM-F: Methodology, Formal analysis, Writing—review & editing. CIM-R: Project administration, Writing—review & editing. NC-dC: Resources, Methodology, Investigation, Writing—review & editing. CC: Conceptualization, Funding acquisition, Validation, Writing—review & editing.

Corresponding author

Correspondence to Cristóbal Chaidez.

Ethics declarations

Conflict of interest

Disclosure of potential conflict of interests: The authors declare that they do not have any conflict of interests or personal competing that could influence the work reported in this paper.

Ethical Approval

Not applicable.

Informed consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Cuevas, O., González-Gómez, J.P., Aguirre-Sánchez, J.R. et al. Genomic Characterization of Twelve Lytic Bacteriophages Infecting Midgut Bacteria of Aedes aegypti. Curr Microbiol 79, 385 (2022). https://doi.org/10.1007/s00284-022-03092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03092-0

Navigation