Skip to main content

Advertisement

Log in

Anthocyanin Addition to Kefir: Metagenomic Analysis of Microbial Community Structure

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The addition of anthocyanin to kefir for the production of more functional and bio-diversified kefir beverages has the potential to increase kefir’s healthful activities. In the present study, anthocyanin extracts, obtained from black carrots, were added into kefir mixture during the fermentation process in different concentrations (1% and 5%, w/v). These kefir samples were then analyzed in terms of their microbiological qualities by metagenomic analysis. The results of the analyses show that the addition of anthocyanin has significant impacts on the community structure of kefir microbiome which in turn directly affects the expected health impacts of the beverage. Kefir with no anthocyanin included predominantly probiotic bacteria such as Lactococcus lactis (34%) and Lactobacillus kefiri (34%). On the other hand, kefir with 1% anthocyanin demonstrated a more balanced distribution of probiotic species like Lb. kefiri (17%), Leuconostoc mesenteroides (9%), and Lc. lactis (5%) at similar abundance rates. 5% anthocyanin kefir demonstrated the highest polarity in the community with a strong dominance of probiotic Lb. kefiri (72%), and distinctly less abundant bacteria such as Streptococcus salivarius subsp. thermophilus (3%). These findings provide that fortification with anthocyanins can be utilized to enhance the quality, composition, and beneficial functions of kefir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Ganatsios V, Nigam P, Plessas S, Terpou A (2021) Kefir as a functional beverage gaining momentum towards its health promoting attributes. Beverages 7(3):48. https://doi.org/10.3390/beverages7030048

    Article  CAS  Google Scholar 

  2. Ilıkkan ÖK, Bağdat EŞ (2021) Comparison of bacterial and fungal biodiversity of Turkish kefir grains with high-throughput metagenomic analysi. LWT 152:112375. https://doi.org/10.1016/j.lwt.2021.112375

    Article  CAS  Google Scholar 

  3. Sulmiyati S, Said NS, Fahrodi DU, Malaka R, Maruddin F (2019) The physicochemical, microbiology, and sensory characteristics of kefir goat milk with different levels of kefir grain. Trop Anim Sci J 42(2):152–158. https://doi.org/10.5398/tasj.2019.42.2.152

    Article  Google Scholar 

  4. Dertli E, Çon AH (2017) Microbial diversity of traditional kefir grains and their role on kefir aroma. LWT Food Sci Technol 85:151–157. https://doi.org/10.1016/j.lwt.2017.07.017

    Article  CAS  Google Scholar 

  5. Blasche S, Kim Y, Mars RAT, Machado D, Maansson M, Kafkia E et al (2021) Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat Microbiol 6(2):196–208. https://doi.org/10.1038/s41564-020-00816-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. HadiNezhad M, Duc C, Han NF, Hosseinian F (2013) Flaxseed soluble dietary fibre enhances lactic acid bacterial survival and growth in kefir and possesses high antioxidant capacity. J Food Res 2(5):152. https://doi.org/10.5539/jfr.v2n5p152

    Article  CAS  Google Scholar 

  7. Sabokbar N, Khodaiyan F (2016) Total phenolic content and antioxidant activities of pomegranate juice and whey based novel beverage fermented by kefir grains. J Food Sci Technol 53(1):739–747. https://doi.org/10.1007/s13197-015-2029-3

    Article  PubMed  CAS  Google Scholar 

  8. Azizi NF, Kumar MR, Yeap SK, Abdullah JO, Khalid M, Omar AR et al (2021) Kefir and its biological activities. Foods 10(6):1210. https://doi.org/10.3390/foods10061210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hamida RS, Shami A, Ali MA, Almohawes ZN, Mohammed AE, Bin-Meferij MM (2021) Kefir: a protective dietary supplementation against viral infection. Biomed Pharmacother 133:110974. https://doi.org/10.1016/j.biopha.2020.110974

    Article  PubMed  CAS  Google Scholar 

  10. Liu JR, Chen MJ, Lin CW (2005) Antimutagenic and antioxidant properties of milk-kefir and soymilk-kefir. J Agric Food Chem 53(7):2467–2474. https://doi.org/10.1021/jf048934k

    Article  PubMed  CAS  Google Scholar 

  11. Fatahi A, Soleimani N, Anticancer AP (2021) Activity of kefir on glioblastoma cancer cell as a new treatment. Int J Food Sci 2021:8180742. https://doi.org/10.1155/2021/8180742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Murray E, Sharma R, Smith KB, Mar KD, Barve R, Lukasik M et al (2019) Probiotic consumption during puberty mitigates LPS-induced immune responses and protects against stress-induced depression- and anxiety-like behaviors in adulthood in a sex-specific manner. Brain Behav Immun 81:198–212. https://doi.org/10.1016/j.bbi.2019.06.016

    Article  PubMed  CAS  Google Scholar 

  13. de Melo EL, Pinto AM, Baima CLB, da Silva HR, da Silva SI, Sanchez-Ortiz BL et al (2020) Evaluation of the in vitro release of isoflavones from soybean germ associated with kefir culture in the gastrointestinal tract and anxiolytic and antidepressant actions in zebrafish (Danio rerio). J Funct Foods 70:103986. https://doi.org/10.1016/j.jff.2020.103986

    Article  CAS  Google Scholar 

  14. Lila MA (2004) Anthocyanins and human health: an in vitro investigative approach. J Biomed Biotechnol 2004(5):306–313. https://doi.org/10.1155/S111072430440401X

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kabakci SA, Turkyilmaz M, Ozkan M (2020) Changes in the quality of kefir fortified with anthocyanin-rich juices during storage. Food Chem 326:126977. https://doi.org/10.1016/j.foodchem.2020.126977

    Article  PubMed  CAS  Google Scholar 

  16. Aiello F, Restuccia D, Spizzirri UG, Carullo G, Leporini M, Loizzo MR (2020) Improving kefir bioactive properties by functional enrichment with plant and agro-food waste extracts. Fermentation 6(3):83. https://doi.org/10.3390/fermentation6030083

    Article  CAS  Google Scholar 

  17. Du X, Myracle AD (2018) Development and evaluation of kefir products made with aronia or elderberry juice: sensory and phytochemical characteristics. Int Food Res J 25(4):1373–1383

    CAS  Google Scholar 

  18. Montibeller MJ, de Lima MP, Tupuna-Yerovi DS, Rios AdO, Manfroi V (2018) Stability assessment of anthocyanins obtained from skin grape applied in kefir and carbonated water as a natural colorant. J Food Process Preserv 42(8):13698. https://doi.org/10.1111/jfpp.13698

    Article  CAS  Google Scholar 

  19. Vagiri M, Ekholm A, Andersson SC, Johansson E, Rumpunen K (2012) An optimized method for analysis of phenolic compounds in buds, leaves, and fruits of black currant (Ribes nigrum L.). J Agr Food Chem 60(42):10501–10510

    Article  CAS  Google Scholar 

  20. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol 299:152–178

    Article  CAS  Google Scholar 

  21. Apak R, Guclu K, Ozyurek M, Celik SE (2008) Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta 160(4):413–419

    Article  CAS  Google Scholar 

  22. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. https://doi.org/10.1038/Nmeth.2604

    Article  PubMed  Google Scholar 

  25. He Y, Caporaso JG, Jiang XT, Sheng HF, Huse SM, Rideout JR et al (2015) Stability of operational taxonomic units: an important but neglected property for analyzing microbial diversity. Microbiome 3:20–30. https://doi.org/10.1186/s40168-015-0081-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. DeSantis TZ, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM et al (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sun X-h, Zhou T-t, Wei C-h, Lan W-q, Zhao Y, Pan Y-j et al (2018) Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control 94:155–161. https://doi.org/10.1016/j.foodcont.2018.07.012

    Article  CAS  Google Scholar 

  29. Gonzalez OA, Escamilla C, Danaher RJ, Dai J, Ebersole JL, Mumper RJ et al (2013) Antibacterial effects of blackberry extract target periodontopathogens. J Periodontal Res 48(1):80–86. https://doi.org/10.1111/j.1600-0765.2012.01506.x

    Article  PubMed  CAS  Google Scholar 

  30. Yang H, Hewes D, Salaheen S, Federman C, Biswas D (2014) Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control 37:15–20. https://doi.org/10.1016/j.foodcont.2013.08.042

    Article  CAS  Google Scholar 

  31. Zacharof MP, Lovitt RW (2012) Bacteriocins produced by lactic acid bacteria a review article. APCBEE Proc 2:50–56. https://doi.org/10.1016/j.apcbee.2012.06.010

    Article  CAS  Google Scholar 

  32. Song AA, In LLA, Lim SHE, Rahim RA (2017) A review on Lactococcus lactis: from food to factory. Microb Cell Fact 16(1):55. https://doi.org/10.1186/s12934-017-0669-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Carasi P, Trejo FM, Perez PF, De Antoni GL, Serradell Mde L (2012) Surface proteins from Lactobacillus kefir antagonize in vitro cytotoxic effect of clostridium difficile toxins. Anaerobe 18(1):135–142. https://doi.org/10.1016/j.anaerobe.2011.11.002

    Article  PubMed  CAS  Google Scholar 

  34. Carasi P, Jacquot C, Romanin DE, Elie A-M, De Antoni GL, Urdaci MC et al (2014) Safety and potential beneficial properties of Enterococcus strains isolated from kefir. Int Dairy J 39(1):193–200. https://doi.org/10.1016/j.idairyj.2014.06.009

    Article  CAS  Google Scholar 

  35. Kim DH, Jeong D, Kang IB, Kim H, Song KY, Seo KH (2017) Dual function of Lactobacillus kefiri DH5 in preventing high-fat-diet-induced obesity: direct reduction of cholesterol and upregulation of PPAR-alpha in adipose tissue. Mol Nutr Food Res 61(11):1700252. https://doi.org/10.1002/mnfr.201700252

    Article  CAS  Google Scholar 

  36. Jung MY, Lee C, Seo MJ, Roh SW, Lee SH (2020) Characterization of a potential probiotic bacterium Lactococcus raffinolactis WiKim0068 isolated from fermented vegetable using genomic and in vitro analyses. BMC Microbiol 20(1):136. https://doi.org/10.1186/s12866-020-01820-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Burton JP, Chanyi RM, Schultz M (2017) Common Organisms and Probiotics: Streptococcus thermophilus (Streptococcus salivarius subsp. thermophilus).In: (Edited by Martin H. Floch ). The Microbiota in Gastrointestinal Pathophysiology, Elsevier, Amsterdam, 165–169

  38. Stanley D, Geier MS, Denman SE, Haring VR, Crowley TM, Hughes RJ et al (2013) Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Vet Microbiol 164(1–2):85–92. https://doi.org/10.1016/j.vetmic.2013.01.030

    Article  PubMed  Google Scholar 

  39. Bae JY, Kim JI, Park S, Yoo K, Kim IH, Joo W et al (2018) Effects of Lactobacillus plantarum and Leuconostoc mesenteroides probiotics on human seasonal and avian influenza viruses. J Microbiol Biotechnol 28(6):893–901. https://doi.org/10.4014/jmb.1804.04001

    Article  PubMed  CAS  Google Scholar 

  40. Lee NK, Lim SM, Cheon MJ, Paik HD (2021) Physicochemical analysis of yogurt produced by Leuconostoc mesenteroides H40 and its effects on oxidative stress in neuronal cells. Food Sci Anim Resour 41(2):261–273. https://doi.org/10.5851/kosfa.2020.e97

    Article  PubMed  PubMed Central  Google Scholar 

  41. Carter GM, Esmaeili A, Shah H, Indyk D, Johnson M, Andreae M et al (2016) Probiotics in human immunodeficiency virus infection: a systematic review and evidence synthesis of benefits and risks. Open Forum Infect Dis 3(4):164. https://doi.org/10.1093/ofid/ofw164

    Article  CAS  Google Scholar 

  42. van Hoek AH, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJ (2011) Acquired antibiotic resistance genes: an overview. Front Microbiol 2:203. https://doi.org/10.3389/fmicb.2011.00203

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sachi S, Ferdous J, Sikder MH, Azizul Karim Hussani SM (2019) Antibiotic residues in milk: past, present, and future. J Adv Vet Anim Res 6(3):315–332. https://doi.org/10.5455/javar.2019.f350

    Article  PubMed  PubMed Central  Google Scholar 

  44. Guzel-Seydim ZB, Gökırmaklı Ç, Greene AK (2021) A comparison of milk kefir and water kefir: physical, chemical, microbiological and functional properties. Trends Food Sci Technol 113:42–53. https://doi.org/10.1016/j.tifs.2021.04.041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Scientific Research Projects Coordination Unit of Istanbul University (Project number: FBA-2022-38774) for supporting the current work.

Funding

This study was funded by Scientific Research Projects Coordination Unit of Istanbul University, Turkey. Project number: FBA-2022–38774.

Author information

Authors and Affiliations

Authors

Contributions

SA: Conceptualization, Methodology, Resources, Supervision, Project administration, Funding acquisition, Investigation, Writing—Original draft preparation. AAE: Visualization, Writing—Original draft preparation. NT: Investigation, Writing—Original draft preparation. AM: Methodology, MC: Review & Editing. İK: Methodology All authors read and approved the manuscript.

Corresponding author

Correspondence to Sevcan Aydin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Research Involving Human and animals Participants, Their Data or Biological Material

Not applicable.

Informed Consent

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, S., Erözden, A.A., Tavşanlı, N. et al. Anthocyanin Addition to Kefir: Metagenomic Analysis of Microbial Community Structure. Curr Microbiol 79, 327 (2022). https://doi.org/10.1007/s00284-022-03017-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03017-x

Navigation