Skip to main content
Log in

Natronococcus pandeyae sp. nov., a Novel Haloarchaeon from Sambhar Salt Lake

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A halophilic archaeon, designated strain LS1_42T, was isolated from Sambhar Salt Lake, Rajasthan, India. Cells were non-motile, coccoid, Gram-stain-variable and present in irregular clusters with light pink pigmented colonies. The strain was strictly aerobic and able to grow without Mg2+. Growth of the strain LS1_42T was observed at 25–45 °C, pH 7.0–11.0 and NaCl concentrations of 10–35% (w/v). The nearest phylogenetic neighbor of strain LS1_42T was Natronococcus amylolyticus Ah-36T based on 16S rRNA and rpoB′ genes with similarity of 95.4% and 91.9%, respectively. Phylogenetic analysis based on 16S rRNA gene, rpoB′ gene and whole-genome sequences indicate that the strain LS1_42T belongs to the genus Natronococcus and is closely related to N. amylolyticus. The genome size was 5.38 Mb with 98.9% completeness. The DNA G + C content of the strain LS1_42T was 63.0 mol%. The average nucleotide identity, average amino acid identity and DNA–DNA hybridization values between LS1_42T and N. amylolyticus Ah-36T were 81.3%, 77.7% and 24.8%, respectively. The major polar lipids detected were phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. On the basis of phenotypic, chemotaxonomic and genome-based analysis, strain LS1_42T represents a novel species within the genus Natronococcus, for which the name Natronococcus pandeyae sp. nov. is proposed. The type strain is LS1_42T (MCC 3654T = JCM 33003T = KCTC 4280T = CGMCC 1.16738T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ventosa A (2006) Unusual micro-organisms from unusual habitats: hypersaline environments. In: Logan NA, Lappin-Scott HM, Oyston PCF (eds) Prokaryotic diversity: mechanisms and significance: published for the Society for General Microbiology, Symposium no. 66, Cambridge University Press, Cambridge, pp 223–253. https://doi.org/10.1017/CBO9780511754913.015

  2. Oren A (2012) Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. Int J Syst Evol Microbiol 62:263–271. https://doi.org/10.1099/ijs.0.038653-0

    Article  PubMed  Google Scholar 

  3. Oren A, Ventosa A, Kamekura M (2017) Halobacteria. Bergey’s manual of systematics of archaea and bacteria. Wiley, Hoboken, pp 1–5. https://doi.org/10.1002/9781118960608.cbm00026.pub2

    Chapter  Google Scholar 

  4. Gupta RS, Naushad S, Baker S (2015) Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 65:1050–1069. https://doi.org/10.1099/ijs.0.070136-0

    Article  CAS  PubMed  Google Scholar 

  5. Parte AC (2018) LPSN - List of prokaryotic names with standing in nomenclature (Bacterio.net), 20 years on. Int J Syst Evol Microbiol 68(6):1825–1829. https://doi.org/10.1099/ijsem.0.002786

    Article  PubMed  Google Scholar 

  6. Hezayen FF, Tindall BJ, Steinbüchel A, Rehm BHA (2002) Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 52:2271–2280. https://doi.org/10.1099/00207713-52-6-2271

    Article  CAS  PubMed  Google Scholar 

  7. Castillo AM, Gutiérrez MC, Kamekura M et al (2006) Halostagnicola larsenii gen. nov., sp. nov., an extremely halophilic archaeon from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 56:1519–1524. https://doi.org/10.1099/00207713-52-6-2271

    Article  CAS  PubMed  Google Scholar 

  8. Gutiérrez MC, Castillo AM, Kamekura M et al (2007) Halopiger xanaduensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from saline Lake Shangmatala in Inner Mongolia, China. Int J Syst Evol Microbiol 57:1402–1407. https://doi.org/10.1099/ijs.0.65001-0

    Article  PubMed  Google Scholar 

  9. Ding JY, Chen SC, Lai MC, Liao TL (2017) Haloterrigena mahii sp. Nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 67(5):1333–1338. https://doi.org/10.1099/ijsem.0.001811

    Article  CAS  PubMed  Google Scholar 

  10. Nagaoka S, Minegishi H, Echigo A, Usami R (2010) Halostagnicola kamekurae sp. nov., an extremely halophilic archaeon from solar salt. Int J Syst Evol Microbiol 60:2828–2831. https://doi.org/10.1099/ijs.0.014449-0

    Article  CAS  PubMed  Google Scholar 

  11. Roh SW, Do NY, Chang HW et al (2009) Haloterrigena jeotgali sp. nov., an extremely halophilic archaeon from salt-fermented food. Int J Syst Evol Microbiol 59:2359–2363. https://doi.org/10.1099/ijs.0.008243-0

    Article  CAS  PubMed  Google Scholar 

  12. Albuquerque L, Taborda M, La Cono V et al (2012) Natrinema salaciae sp. nov., a halophilic archaeon isolated from the deep, hypersaline anoxic Lake Medee in the Eastern Mediterranean Sea. Syst Appl Microbiol 35(6):368–373. https://doi.org/10.1016/j.syapm.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  13. McGenity TJ, Gemmell RT, Grant WD (1998) Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int J Syst Bacteriol 48:1187–1196. https://doi.org/10.1099/00207713-48-4-1187

    Article  PubMed  Google Scholar 

  14. Nagaoka S, Minegishi H, Echigo A et al (2011) Halostagnicola alkaliphila sp. nov., an alkaliphilic haloarchaeon from commercial rock salt. Int J Syst Evol Microbiol 61:1149–1152. https://doi.org/10.1099/ijs.0.023119-0

    Article  CAS  PubMed  Google Scholar 

  15. Tindall BJ, Ross HNM, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. Syst Appl Microbiol 5(1):41–57. https://doi.org/10.1016/S0723-2020(84)80050-8

    Article  Google Scholar 

  16. Kanai H, Kobayashi T, Aono R, Kudo T (1995) Natronococcus amylolyticus sp. nov., a haloalkaliphilic archaeon. Int J Syst Bacteriol 45(4):762–766. https://doi.org/10.1099/00207713-45-4-762

    Article  CAS  Google Scholar 

  17. Roh SW, Do NY, Chang HW et al (2007) Natronococcus jeotgali sp. nov., a halophilic archaeon isolated from shrimp jeotgal, a traditional fermented seafood from Korea. Int J Syst Evol Microbiol 57(Pt 9):2129–2131. https://doi.org/10.1099/ijs.0.65120-0

    Article  CAS  PubMed  Google Scholar 

  18. Corral P, Gutiérrez MC, Castillo AM et al (2013) Natronococcus roseus sp. nov., a haloalkaliphilic archaeon from a hypersaline lake. Int J Syst Evol Microbiol 63(Pt 1):104–108. https://doi.org/10.1099/ijs.0.036558-0

    Article  CAS  PubMed  Google Scholar 

  19. Kajale S, Deshpande N, Shouche Y, Sharma A (2020) Cultivation of diverse microorganisms from hypersaline lake and impact of delay in sample processing on cell viability. Curr Microbiol 77:716–721. https://doi.org/10.1007/s00284-019-01857-8

    Article  CAS  PubMed  Google Scholar 

  20. Sharma A, Shouche Y (2014) Microbial culture collection (MCC) and international depositary authority (IDA) at National Centre for Cell Science, Pune. Indian J Microbiol 54:129. https://doi.org/10.1007/s12088-014-0447-y

    Article  PubMed  PubMed Central  Google Scholar 

  21. Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238. https://doi.org/10.1099/00207713-47-1-233

    Article  Google Scholar 

  22. Sharma A, Pandey A, Shouche YS et al (2009) Characterization and identification of Geobacillus spp. isolated from Soldhar hot spring site of Garhwal Himalaya, India. J Basic Microbiol 49:187–194. https://doi.org/10.1002/jobm.200800194

    Article  CAS  PubMed  Google Scholar 

  23. Kajale S, Deshpande N, Pali S et al (2020) Natrialba swarupiae sp. nov., a halophilic archaeon isolated from a hypersaline lake in India. Int J Syst Evol Microbiol 70(3):1876–1881. https://doi.org/10.1099/ijsem.0.003986

    Article  CAS  PubMed  Google Scholar 

  24. Yoon SH, Ha SM, Kwon S et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sharma A, Dhar SK, Prakash O et al (2014) Description of Domibacillus indicus sp. nov., isolated from ocean sediments and emended description of the genus Domibacillus. Int J Syst Evol Microbiol 64:3010–3015. https://doi.org/10.1099/ijs.0.064295-0

    Article  CAS  PubMed  Google Scholar 

  26. Wattam AR, Davis JJ, Assaf R et al (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45(D1):D535–D542. https://doi.org/10.1093/nar/gkw1017

    Article  CAS  PubMed  Google Scholar 

  27. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075. https://doi.org/10.1093/bioinformatics/btt086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parks DH, Imelfort M, Skennerton CT et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoon SH, Ha SM, Lim J et al (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez-R LM, Konstantinidis KT (2014) Bypassing cultivation to identify bacterial species. Microbe Mag 9:111–118. https://doi.org/10.1128/MICROBE.9.111.1

    Article  Google Scholar 

  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  32. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  33. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  34. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution (N Y) 39:783–791. https://doi.org/10.2307/2408678

    Article  Google Scholar 

  36. Na SI, Kim YO, Yoon SH et al (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285. https://doi.org/10.1007/s12275-018-8014-6

    Article  CAS  PubMed  Google Scholar 

  37. Chun J, Oren A, Ventosa A et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  PubMed  Google Scholar 

  38. Oren A (2012) The function of gas vesicles in halophilic archaea and bacteria: theories and experimental evidence. Life 3(1):1–20. https://doi.org/10.3390/life3010001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485. https://doi.org/10.1128/jb.70.4.484-485.1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cui HL, Sun FF, Gao X et al (2010) Haladaptatus litoreus sp. nov., an extremely halophilic archaeon from a marine solar saltern, and emended description of the genus Haladaptatus. Int J Syst Evol Microbiol 60(5):1085–1089. https://doi.org/10.1099/ijs.0.015933-0

    Article  CAS  PubMed  Google Scholar 

  41. Sharma A, Jani K, Feng GD et al (2018) Subsaxibacter sediminis sp. nov., isolated from arctic glacial sediment and emended description of the genus Subsaxibacter. Int J Syst Evol Microbiol 68:1678–1682. https://doi.org/10.1099/ijsem.0.002729

    Article  CAS  PubMed  Google Scholar 

  42. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  43. Card GL (1973) Metabolism of phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin of Bacillus stearothermophilus. J Bacteriol 114:1125–1137. https://doi.org/10.1128/jb.114.3.1125-1137.1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soto CY, Cama M, Gibert I, Luquin M (2000) Application of an easy and reliable method for sulfolipid-I detection in the study of its distribution in Mycobacterium tuberculosis strains. FEMS Microbiol Lett 187:103–107. https://doi.org/10.1016/S0378-1097(00)00183-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Aharon Oren and Prof. Bernhard Schink for the Latin etymology and species epithet. We are grateful to Kunal Jani for his help in sample collection.

Funding

This work was supported by the Department of Biotechnology (DBT), Government of India (Grant No. BT/Coord.II/01/03/2016), under the project ‘Establishment of National Centre for Microbial Resource’.

Author information

Authors and Affiliations

Authors

Contributions

SK isolated the strain LS1_41T, performed phenotypic, biochemical, genomic and phylogenetic analysis and wrote the manuscript; TL performed the polar lipid analysis; ND, YS and AS supervised the study; AS designed study and revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Avinash Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study was not performed on human or animals, therefore no ethical approval is required.

Consent for Publication

All authors approve to submit and publication to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajale, S., Deshpande, N., Lodha, T. et al. Natronococcus pandeyae sp. nov., a Novel Haloarchaeon from Sambhar Salt Lake. Curr Microbiol 79, 51 (2022). https://doi.org/10.1007/s00284-021-02740-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-021-02740-1

Navigation