Skip to main content
Log in

Anaerobic Degradation of Propanil in Soil and Sediment Using Mixed Bacterial Culture

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The widespread use of the herbicide, propanil, causes severe environmental problems. In this study, the effects of propanil on the bacterial community in a sediment slurry were determined. Moreover, the degradation of the herbicide by pure and mixed cultures was first conducted under anaerobic conditions. The results showed that propanil caused significant changes in the bacterial community under anaerobic conditions. Four bacterial strains, i.e., Geobacter sp. Pr-1, Paracoccus denitrificans Pr-2, Pseudomonas sp. Pr-3, and Rhodococcus sp. Pr-4, isolated from the an enrichment sediment slurry were the first pure cultures that degraded propanil and 3,4-dichloroaniline (3,4-DCA) under anaerobic conditions. Some individual isolates showed the slow degradation of propanil and 3,4-DCA, but the mixture of the four strains increased the degradation rates of both compounds. The mixed culture of these isolates transformed more than 90% of propanil within 10 days in liquid media with the amendment of dextrose, glucose, or acetate. The determination of degradation pathway showed that propanil was transformed to 3,4-DCA and some other products before degrading completely. This study provides valuable information on the effects of propanil on the bacterial community and the synergistic degradation of propanil under anaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Primel EG, Zanella R, Kurz MHS, Goncalves FF, Martins ML, Machado LOS, Marchesan E (2007) Risk assessment of surface water contamination by herbicide residues: monitoring of propanil degradation in irrigated rice field waters using HPLC-UV and confirmation by GC–MS. J Braz Chem Soc 18:585–589. https://doi.org/10.1590/S0103-50532007000300014

    Article  CAS  Google Scholar 

  2. Tomlin C (2009) The Pesticide Manual. Fifteenth. BCPC Publications, UK, pp 944–945

    Google Scholar 

  3. Dabrowski JM, Peall SK, Van Niekerk A, Reinecke AJ, Day JA, Schulz R (2002) Predicting runoff-induced pesticide input in agricultural sub-catchment surface waters: linking catchment variable sand contamination. Water Res 36:4975–4984. https://doi.org/10.1016/S0043-1354(02)00234-8

    Article  CAS  PubMed  Google Scholar 

  4. Silva E, Batista S, Viana P, Antunes P, Serôdio L, Cardoso AT, Cerejeira MJ (2006) Pesticides and nitrates in groundwater from oriziculture areas of the ‘Baixo Sado’ region (Portugal). Int J Environ An Ch 86:955–972. https://doi.org/10.1080/03067310600833336

    Article  CAS  Google Scholar 

  5. Pothuluri JV, Hinson JA, Cerniglia CE (1991) Propanil: Toxicological characteristics, metabolism, and biodegradation potential in soil. J Environ Qual 20:330–347. https://doi.org/10.2134/jeq1991.00472425002000020002x

    Article  CAS  Google Scholar 

  6. Mitsou K, Koulianou A, Lambropoulou D, Pappas P, Albanis T, Lekka M (2006) Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide propanil in the aquatic plant Lemna minor. Chemosphere 62:275–284. https://doi.org/10.1016/j.chemosphere.2005.05.026

    Article  CAS  PubMed  Google Scholar 

  7. Darren R, Renate H, Nick B, Andrew D, Mohamed F, Michael E, Peter E (2009) Clinical outcomes and kinetics of propanil following acute self-poisoning: a prospective case series. BMC Clin Pharmacol 9:3. https://doi.org/10.1186/1472-6904-9-3

    Article  CAS  Google Scholar 

  8. Kanawi E, Van Scoy AR, Budd R, Tjeerdema RS (2016) Environmental fate and ecotoxicology of propanil: a review. Environ Toxicol Chem 98:689–704. https://doi.org/10.1080/02772248.2015.1133816

    Article  CAS  Google Scholar 

  9. Milan M, Vidotto F, Piano S, Negre M, Ferrero A (2012) Dissipation of propanil and 3,4-dichloroaniline in three different rice management systems. J Environ Qual 41:1487–1496. https://doi.org/10.2134/jeq2012.0175

    Article  CAS  PubMed  Google Scholar 

  10. Wauchope RD, Buttler TM, Hornsby AG, Augustijn-Beckers PWM, Burt JP (1992) The SCS/ARS/CES pesticide properties database for environmental decision-making. Rev Environ Contam Toxicol 123:1–155. https://doi.org/10.1007/978-1-4612-2862-2_1

    Article  CAS  PubMed  Google Scholar 

  11. Pettigrew CA, Paynter MJB, Camper ND (1985) Anaerobic microbial degradation of the herbicide propanil. Soil Biol Biochem 17(6):815–818. https://doi.org/10.1016/0038-0717(85)90139-7

    Article  CAS  Google Scholar 

  12. Chen Z, Schäffer A (2016) The fate of the herbicide propanil in plants of the littoral zone of the three Gorges Reservoir (TGR), China. J Environ Sci (China) 48:24–33. https://doi.org/10.1016/j.jes.2016.01.026

    Article  CAS  Google Scholar 

  13. Tixier C, Sancelme P, Bonnemoy F, Cuer A, Veschambre H (2001) Degradation products of a phenylurea herbicide, diuron: ecotoxicity, and biotransformation. Environ Toxicol Chem 20:1381. https://doi.org/10.1002/etc.5620200701

    Article  CAS  PubMed  Google Scholar 

  14. Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56:1021–1032. https://doi.org/10.1016/j.chemosphere.2004.04.061

    Article  CAS  PubMed  Google Scholar 

  15. Roehrs R, Roehrs M, Machado SL, Zanella R (2012) Biodegradation of herbicide propanil and its subproduct 3,4-dichloroaniline in water. Clean 40:958–964. https://doi.org/10.1002/clen.201100693

    Article  CAS  Google Scholar 

  16. Hou Y, Li S, Dong W, Yuan Y, Wang Y, Shen W, Li J, Cui Z (2015) Community structure of a propanil-degrading consortium and the metabolic pathway of Microbacterium sp. strain T4–7. Int Biodeterior Biodegrad 105:80–89. https://doi.org/10.1016/j.ibiod.2015.08.018

    Article  CAS  Google Scholar 

  17. Zhang J, Yin JG, Hang BJ, Cai S, He J, Zhou SG, Li SP (2012) Cloning of a novel arylamidase gene from Paracoccus sp. strain FLN-7 that hydrolyzes amide pesticides. Appl Environ Microbiol 78(14):4848–4855. https://doi.org/10.1128/AEM.00320-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang L, Hu Q, Hang P, Zhou X, Jiang J (2019) Characterization of an arylamidase from a newly isolated propanil-transforming strain of Ochrobactrum sp. PP-2. Ecotoxicol Environ Saf 167:122–129. https://doi.org/10.1016/j.ecoenv.2018.09.127

    Article  CAS  PubMed  Google Scholar 

  19. Zhang L, Zhou XY, Su XJ, Hu Q, Jiang JD (2019) Spirosoma sordidisoli sp. nov., a propanil-degrading bacterium isolated from a herbicide-contaminated soil. Antonie Van Leeuwenhoek 112(10):1523–1532. https://doi.org/10.1007/s10482-019-01278-4

    Article  CAS  PubMed  Google Scholar 

  20. Oanh NT, Duc HD, Ngoc DTH, Thuy NTD, Hiep NH, Van Hung N (2020) Biodegradation of propanil by Acinetobacter baumannii DT in a biofilm-batch reactor and effects of butachlor on the degradation process. FEMS Microbiol Lett 367(2):005. https://doi.org/10.1093/femsle/fnaa005

    Article  CAS  Google Scholar 

  21. Bunce NJ, Merrick RL, Corke CT (1983) Reductive transformations of nitrate with 3,4-dichloroaniline and related compounds by Escherichia coli. J Agric Food Chem 31(5):1071–1075. https://doi.org/10.1021/jf00119a037

    Article  CAS  Google Scholar 

  22. Travkin V, Baskunov BP, Golovlev EL, Boersma MG, Boeren S, Vervoort J, van Berkel WJ, Rietjens IM, Golovleva LA (2002) Reductive deamination as a new step in the anaerobic microbial degradation of halogenated anilines. FEMS Microbiol Lett 209:307–312. https://doi.org/10.1111/j.1574-6968.2002.tb11149.x

    Article  CAS  PubMed  Google Scholar 

  23. Ha DD, Nguyen TO (2019) Anaerobic degradation of chloroanilines by Geobacter sp. KT5. Curr Microbiol 76(2):248–257. https://doi.org/10.1007/s00284-019-01660-5

    Article  CAS  Google Scholar 

  24. Hossain HMZ, Kawahata H, Roser BP, Sampei Y, Manaka T, Otani S (2017) Geochemical characteristics of modern river sediments in Myanmar and Thailand: implications for provenance and weathering. Chem Erde 77:443–458. https://doi.org/10.1016/j.chemer.2017.07.005

    Article  CAS  Google Scholar 

  25. Qu M, Li N, Li H, Yang T, Liu W, Yan Y, Feng X, Zhu D (2018) Phytoextraction and biodegradation of atrazine by Myriophyllum spicatum and evaluation of bacterial communities involved in atrazine degradation in lake sediment. Chemosphere 209:439–448. https://doi.org/10.1016/j.chemosphere.2018.06.055

    Article  CAS  PubMed  Google Scholar 

  26. American Public Health Association, American Water Works Association and Water Environmental Federation. Standard Methods for the Examination of Water and Wastewater. Washington, D.C.: APHA-AWWA-WEF, 1998

  27. Pan Y, Chen J, Zhou H, Tam NFY (2018) Changes in microbial community during removal of BDE-153 in four types of aquatic sediments. Sci Total Environ 613–614:644–652. https://doi.org/10.1016/j.scitotenv.2017.09.130

    Article  CAS  PubMed  Google Scholar 

  28. Song B, Gong J, Tang W, Zeng G, Chen M, Xu P, Shen M, Ye S, Feng H, Zhou C, Yang Y (2020) Influence of multi-walled carbon nanotubes on the microbial biomass, enzyme activity, and bacterial community structure in 2,4-dichlorophenol-contaminated sediment. Sci Total Environ 713:136645. https://doi.org/10.1016/j.scitoten

    Article  CAS  PubMed  Google Scholar 

  29. Wang Z, Yang Y, Dai Y, Xie S (2015) Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community. J Hazard Mater 286:306–314. https://doi.org/10.1016/j.jhazmat.2014.12.057

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Wang PF, Wang C, Miao HC, Wang X (2018) How wastewater with different nutrient levels influences microbial degradation of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) in anaerobic sediments. Chemosphere 211:128–138. https://doi.org/10.1016/j.chemosphere.2018.07.122

    Article  CAS  PubMed  Google Scholar 

  31. Ahmad M, Yang Q, Zhang Y, Ling J, Sajjad W, Qi S, Zhou W, Zhang Y, Lin X, Zhang Y, Dong J (2019) The distinct response of phenanthrene enriched bacterial consortia to different PAHs and their degradation potential: a mangrove sediment microcosm study. J Hazard Mater 380:120863. https://doi.org/10.1016/j.jhazmat.2019.120863

    Article  CAS  PubMed  Google Scholar 

  32. Tang FHM, Jeffries TC, Vervoort RW, Conoley C, Coleman NV, Maggi F (2019) Microcosm experiments and kinetic modelling of glyphosate biodegradation in soils and sediments. Sci Total Environ 658:105–115. https://doi.org/10.1016/j.scitotenv.2018.12.179

    Article  CAS  PubMed  Google Scholar 

  33. Morris BE, Gissibl A, Kümmel S, Richnow HH, Boll M (2014) A PCR-based assay for the detection of anaerobic naphthalene degradation. FEMS Microbiol Lett 354(1):55–59. https://doi.org/10.1111/1574-6968.12429

    Article  CAS  PubMed  Google Scholar 

  34. Duc HD (2019) Anaerobic degradation of 2-chloro-4-nitroaniline by Geobacter sp. KT7 and Thauera aromatica KT9. FEMS Microbiol Lett 366:174. https://doi.org/10.1093/femsle/fnz174

    Article  CAS  Google Scholar 

  35. Wu X, Wu X, Li J, Wu Q, Ma Y, Sui W, Zhao L, Zhang X (2020) Cross-feeding between Thauera aminoaromatica and Rhodococcus pyridinivorans drove quinoline biodegradation in a denitrifying bioreactor. BioRxiv. https://doi.org/10.1101/2020.01.31.929745

    Article  PubMed  PubMed Central  Google Scholar 

  36. Duc HD, Thuy NTD, Truc HTT, Nhu NTH, Oanh NT (2020) Degradation of butachlor and propanil by Pseudomonas sp. strain But2 and Acinetobacter baumannii strain DT. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnaa151

    Article  PubMed  Google Scholar 

  37. Xiao H, Kuckelkorn J, Nüßer L, Floehr T, Hennig M, Roß-Nickoll M, Schäffer A, Hollert H (2016) The metabolite 3,4,3′,4′-tetrachloroazobenzene (TCAB) exerts a higher ecotoxicity than the parent compounds 3,4-dichloroaniline (3,4-DCA) and propanil. Sci Total Environ 551–552:304–316. https://doi.org/10.1016/j.scitotenv.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  38. Susarla S, Yonezawa Y, Masunaga S (1997) Reductive dehalogenation of chloroanilines in anaerobic estuarine sediment. Environ Technol 18(1):75–83. https://doi.org/10.1080/09593331808616514

    Article  CAS  Google Scholar 

  39. Arora PK (2015) Bacterial degradation of monocyclic aromatic amines. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00820

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Vietnamese Ministry of Education and Training for the scientific theme (Code: B2019.SPD.04). The authors would like to thank them for funding this study. We are also grateful to the anonymous reviewers, whose suggestions helped to improve this manuscript.

Author information

Authors and Affiliations

Author notes

  1. Nguyen Thi Oanh and Ha Danh Duc have equally contributed to the preparation of the manuscript and be considered as the co-first authors.

    Authors

    Contributions

    Oanh designed and performed the experiments. Duc was involved in planning, supervised the work, and also performed the experiments. Moreover, Duc performed the calculations, wrote the manuscript, and provided critical feedback.

    Corresponding author

    Correspondence to Nguyen Thi Oanh.

    Ethics declarations

    Conflict of interest

    The authors declare that they have no conflict of interest.

    Ethical Approval

    The study does not involve any human participants or animals in this study.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Oanh, N.T., Duc, H.D. Anaerobic Degradation of Propanil in Soil and Sediment Using Mixed Bacterial Culture. Curr Microbiol 78, 1499–1508 (2021). https://doi.org/10.1007/s00284-021-02419-7

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s00284-021-02419-7

    Navigation