Skip to main content

Advertisement

Log in

Complete Genome of Marine Microalgae Associated Algicidal Bacterium Sulfitobacter pseudonitzschiae H46 with Quorum Sensing System

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Sulfitobacter pseudonitzschiae H46, a marine bacterium associated with microalgae, exhibits algicidal activity against harmful algal bloom microalgae Chattonella marina and Alexandrium tamarense. The complete genome of S. pseudonitzschiae H46 was sequenced to investigate its algicidal mechanism further. One chromosome, eight circular plasmids and add one not circularized plasmid (Plas II) were identified, which are 4.93 Mb in length with 4871 open reading frames. The genome contains 43 transfer RNA (tRNA) genes; six ribosome RNA (rRNA) genes that can be classified into two 5S rRNA, two 16S rRNA, two 23S rRNA, and two small RNA (sRNA) genes. Genomic annotation revealed that S. pseudonitzschiae H46 has two pairs of LuxI/R-type Quorum-sensing (QS) systems. The QS systems can regulate the functions involved in host colonization and biofilm formation. Moreover, the existence of 49 Type-IV and Dddl genes in the chromosome indicated that Dimethylsulfoniopropionate (DMSP) catabolism of S. pseudonitzschiae H46 is the main interaction with marine microalgae. S. pseudonitzschiae H46 utilizes DMSP produced by microalgae as the carbon source, and this may induce algicidal activity. The complete genome sequence of S. pseudonitzschiae H46 can provide useful information on the underlying molecular mechanism between QS and algicidal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sorokin DY (1995) Sulfitobacter pontiacus gen. nov., sp. nov. a new heterotrophic bacterium from the black sea, specialized on sulfite oxidation. Mikrobiologiya 64:354–364

    CAS  Google Scholar 

  2. Pukall R, Buntefuss D, Fruhling A, Rohde M, Kroppenstedt RM, Burghardt J, Lebaron P, Bernard L, Stackebrandt E (1999) Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the alpha-proteobacteria. Int J Syst Bacteriol 49:513–519

    Article  CAS  Google Scholar 

  3. Long C, Lu XL, Gao Y, Jiao BH, Liu XY (2011) Description of a Sulfitobacter strain and its extracellular cyclodipeptides. Evid Based Complement Altern Med 2011:393752

    Google Scholar 

  4. Song J, Jang HJ, Joung Y, Kang I, Cho JC (2019) Sulfitobacter profundi sp. nov. isolated from deep seawater. J Microbiol 57:661–667

    Article  CAS  Google Scholar 

  5. Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76(3):667–684

    Article  CAS  Google Scholar 

  6. Töpel M, Pinder MIM, Johansson ON, Kourtchenko O, Clarke AK, Godhe A (2019) Complete genome sequence of novel Sulfitobacter pseudonitzschiae strain SMR1, isolated from a culture of the marine diatom Skeletonema marinoi. J Genomics 7:7–10

    Article  Google Scholar 

  7. Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, Morales RL, Berthiaume CT, Parker MS, Djunaedi B, Ingalls AE, Parsek MR, Moran MA, Armbrust EV (2015) Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522(7554):98–101

    Article  CAS  Google Scholar 

  8. Zhou J, Lyu Y, Richlen ML, Anderson DM, Cai Z (2016) Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions. Crit Rev Plant Sci 35(2):81–105

    Article  Google Scholar 

  9. Eberhard A (1972) Inhibition and activation of bacterial luciferase synthesis. J Bacteriol 109(3):1101–1105

    Article  CAS  Google Scholar 

  10. Geng HF, Belas R (2010) Molecular mechanisms underlying roseobacter-phytoplankton symbioses. Curr Opin Biotech 21:332–338

    Article  CAS  Google Scholar 

  11. Chi WD, Zheng L, He CF, Han B, Zheng MG, Gao W, Sun CJ, Zhou GF, Gao XX (2017) Quorum sensing of microalgae associated marine Ponticoccus sp. PD-2 and its algicidal function regulation. AMB Express 7:59–69

    Article  Google Scholar 

  12. Reiner J, Pisani L, Qiao WQ, Singh R, Yang Y, Shi LS, Khan WA, Sebra R, Cohen N, Babu A, Edelmann L, Jabs EW, Scott SA (2018) Cytogenomic identification and long-read single molecule real-time (SMRT) sequencing of a Bardet-Biedl syndrome 9 (BBS9) deletion. NPJ Genom Med 3(1):3–7

    Article  Google Scholar 

  13. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964

    Article  CAS  Google Scholar 

  14. Lagesen K, Hallin P, Rodland EA, Stærfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108

    Article  CAS  Google Scholar 

  15. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37:136–140

    Article  Google Scholar 

  16. Ge R, Mai G, Wang P, Zhou M, Luo Y, Cai Y, Zhou F (2016) CRISPRdigger: detecting CRISPRs with better direct repeat annotations. Sci Rep 6(1):32942–32951

    Article  Google Scholar 

  17. Hsiao W, Wan I, Jones SJ, Brinkman FSL (2003) IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19(3):418–420

    Article  CAS  Google Scholar 

  18. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29(12):2607–2618

    Article  CAS  Google Scholar 

  19. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson DP, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  CAS  Google Scholar 

  20. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirawaka M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(90001):354–357

    Article  Google Scholar 

  21. Galperin MY, Makarova KS, Wolf YI, Koonin EV (2014) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43(1):261–269

    Google Scholar 

  22. Li W, Jaroszewski L, Godzik A (2002) Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics 18(1):77–82

    Article  CAS  Google Scholar 

  23. Saier MH, Reddy VS, Tamang DG, Vastermark A (2013) The transporter classification database. Nucleic Acids Res 42(1):251–258

    Google Scholar 

  24. Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28(1):45–48

    Article  CAS  Google Scholar 

  25. Blin K, Andreu VP, Santos EL, Carratore FD, Lee SY, Medema MH, Weber T (2019) The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 47(1):625–630

    Article  Google Scholar 

  26. Blin K, Wolf T, Chevrette MG, Lu XW, Schwalen CJ, Kautsar SA, Duran HG, Santos EL, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R, Takano E, Lee SY, Weber T, Medema MX (2017) antiSMASH 4.0- improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 45(1):36–41

    Article  Google Scholar 

  27. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645

    Article  CAS  Google Scholar 

  28. Tait K, Havenhand J (2013) Investigating a possible role for the bacterial signal molecules N-acylhomoserine lactones in Balanus improvises cyprid settlement. Mol Ecol 22(9):2588–2602

    Article  CAS  Google Scholar 

  29. Barcarolo MV, Garavaglia BS, Gottig N, Ceccarelli EA, Catalano-Dupuy DL, Ottado J (2020) A novel Xanthomonas citri subsp. citri NADPH quinone reductase involved in salt stress response and virulence. BBA Gen Subjects 1864(3):129514

    Google Scholar 

  30. Raina J, Tapiolas D, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 75(11):3492–3501

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Scientific Fund for National Public Research Institutes of China (2021Q10), the National Natural Science Foundation of China (41806201, 41776176), the National Natural Science Foundation of China-Shandong Joint Funded Project (U1606404) and Open Fund of Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education (KF202006), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Wang or Li Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1085 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, T., Wang, S., Shan, Y. et al. Complete Genome of Marine Microalgae Associated Algicidal Bacterium Sulfitobacter pseudonitzschiae H46 with Quorum Sensing System. Curr Microbiol 78, 3741–3750 (2021). https://doi.org/10.1007/s00284-021-02632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02632-4

Navigation