Skip to main content

Advertisement

Log in

Antifungal Properties, Abiotic Stress Resistance, and Biocontrol Ability of Bacillus mojavensis PS17

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Plant-protecting Bacillus sp. strains used as biocontrol agents frequently produce metabolites inhibiting phytopathogenic fungi. Recently, the search for a novel biocontrol agent with a wide spectrum of disease control drew attention to Bacillus subtilis and their related species, including Bacillus mojavensis. In this study, we determined the antifungal properties of the endophytic B. mojavensis PS17 isolated from wheat seeds. Metabolites produced by B. mojavensis PS-17 inhibit the growth of Fusarium graminearum, Fusarium oxysporum, Fusarium chlamydosporum, Ascochyta pisi, Alternaria alternate, Sclerotinia sclerotiorum, Verticillium dahliaee, and Epicoccum nigrum strains. B. mojavensis strain PS17 produces several hydrolytic enzymes, such as chitinase, β-glucanase, cellulase, lipase, and protease. Additionally, strain B. mojavensis PS17 demonstrates drought tolerance under osmotic pressure of −2.2 MPa and a moderate halotolerance in 5% (w/v) of NaCl. B. mojavensis PS17 on tomato seedlings was able to reduce lesions of Forl ZUM2407 by 48.11% ± 1.07, showing the potentials of B. mojavensis PS17 to be adapted as a biocontrol agent for agricultural use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marín Sillué S, Ramos Girona AJ, Cano Sancho G, Sanchís Almenar V (2013) Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol 60:218–237. https://doi.org/10.1016/j.fct.2013.07.047

    Article  CAS  Google Scholar 

  2. Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:519–537. https://doi.org/10.1007/s12571-012-0200-5

    Article  Google Scholar 

  3. Pimentel D (1996) Green revolution agriculture and chemical hazards. Sci Total Environ 188:S86–S98. https://doi.org/10.1016/0048-9697(96)05280-1

    Article  CAS  PubMed  Google Scholar 

  4. Albayrak ÇB (2019) Bacillus Species as biocontrol agents for fungal plant pathogens. In: Islam M, Rahman M, Pandey P, Boehme M, Haesaert G (eds) Bacilli and agrobiotechnology: phytostimulation and biocontrol. Bacilli in climate resilient agriculture and bioprospecting. Springer, Cham, pp 239–265. https://doi.org/10.1007/978-3-030-15175-1_13

    Chapter  Google Scholar 

  5. Yuliar NYA, Toyota K (2015) Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ 30:1–11. https://doi.org/10.1264/jsme2.ME14144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Plett JM, Martin FM (2018) Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. Plant J 93(4):729–746. https://doi.org/10.1111/tpj.13802

    Article  CAS  PubMed  Google Scholar 

  7. Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31(3):446–459. https://doi.org/10.1080/13102818.2017.1286950

    Article  CAS  Google Scholar 

  8. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918

    Article  CAS  PubMed  Google Scholar 

  9. Radhakrishnan R, Hashem A, Abd Allah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667. https://doi.org/10.3389/fphys.2017.00667

    Article  PubMed  PubMed Central  Google Scholar 

  10. Calvo P, Ormeño-Orrillo E, Martínez-Romero E, Zúñiga D (2010) Characterization of Bacillus isolates of potato rhizosphere from andean soils of Peru and their potential PGPR characteristics. Braz J Microbiol 41(4):899–906. https://doi.org/10.1590/S1517-83822010000400008

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bacon CW, Hill NS (1996) Symptomless grass endophytes: products of coevolutionary symbioses and their role in the ecological adaptations of grasses. Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. APS Press, St Paul, pp 155–178

    Google Scholar 

  12. Bacon CW, Yates IE, Hinton DM, Meredith F (2001) Biological control of Fusarium moniliforme in maize. Environ Health Perspect 109(suppl 2):325–332. https://doi.org/10.1289/ehp.01109s2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Snook ME, Mitchell T, Hinton DM, Bacon CW (2009) Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J Agric Food Chem 57(10):4287–4292. https://doi.org/10.1021/jf900164h

    Article  CAS  PubMed  Google Scholar 

  14. Jasim B, Sreelakshmi S, Mathew J, Radhakrishnan EK (2016) Identification of endophytic Bacillus mojavensis with highly specialized broad spectrum antibacterial activity. 3 Biotech 6(2):187. https://doi.org/10.1007/s13205-016-0508-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiao L, Xie CC, Cai J, Lin ZJ, Chen YH (2009) Identification and characterization of a chitinase-produced Bacillus showing significant antifungal activity. Curr Microbiol 58(5):528–533. https://doi.org/10.1007/s00284-009-9363-5

    Article  CAS  PubMed  Google Scholar 

  16. Validov SZ, Kamilova F, Lugtenberg BJ (2009) Pseudomonas putida strain PCL1760 controls tomato foot and root rot in stonewool under industrial conditions in a certified greenhouse. Biol Control 48(1):6–11

    Article  Google Scholar 

  17. Safford CE, Stark CN (1935) The advantages of skim-milk agar for the determination of the sanitary quality of market milk. J Dairy Sci 18(8):539–546. https://doi.org/10.3168/jds.S0022-0302(35)93171-X

    Article  CAS  Google Scholar 

  18. Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. J Gen Microbiol 134:169–176. https://doi.org/10.1099/00221287-134-1-169

    Article  CAS  Google Scholar 

  19. Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5(6):578–595. https://doi.org/10.7150/ijbs.5.578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suryadi Y, Susilowati DN, Lestari P, Priyatno TP, Samudra IM, Hikmawati N, Mubarik NR (2014) Characterization of bacterial isolates producing chitinase and glucanase for biocontrol of plant fungal pathogens. J Agric Technol 10(4):983–999

    Google Scholar 

  21. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43(4):777–780

    Article  CAS  Google Scholar 

  22. Dk J, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13(4):271–279. https://doi.org/10.1016/0167-7012(91)90064-W

    Article  Google Scholar 

  23. Bodour AA, Miller-Maier RM (1998) Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Methods 32(3):273–280. https://doi.org/10.1016/S0167-7012(98)00031-1

    Article  CAS  Google Scholar 

  24. Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51(5):914–916. https://doi.org/10.1104/pp.51.5.914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Efendi R, Sudarsono SI, Sulistiono E (2009) Seleksi dii toleransi genotipe jagung terhadap kekeringan. Penelit Pertan Tanam Pangan 28(2):63–68

    Google Scholar 

  26. Alikhani HA, Mohamadi L (2010) Assessing tolerance of rhizobial lentil symbiosis isolates to salinity and drought in dry land farming condition. In: 19th world congress of soil science, soil solutions for a changing world, p 1–6

  27. Viscardi S, Ventorino V, Duran P, Maggio A, De Pascale S, Mora ML, Pepe O (2016) Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. J Soil Sci Plant Nutr 16(3):848–863. https://doi.org/10.4067/S0718-95162016005000060

    Article  CAS  Google Scholar 

  28. Koyshibayev M, Muminjanov H (2016) Guidelines for monitoring diseases, pest and weeds in cereal crops. Ankara: Food and Agriculture Organization of the United Nations. p. 8. http://www.fao.org/3/a-i5550e

  29. Singh RP, Manchanda G, Maurya IK, Maheshwari NK, Tiwari PK, Rai AR (2019) Streptomyces from rotten wheat straw endowed the high plant growth potential traits and agro-active compounds. Biocatal Agric Biotechnol 17:507–513. https://doi.org/10.1016/j.bcab.2019.01.014

    Article  Google Scholar 

  30. Ester S, Natalia PV, Marcela M, Carla Z, Karina B, Marcelo C (2015) Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean. Microbiol Res 180:40–48. https://doi.org/10.1016/j.micres.2015.07.004

    Article  CAS  Google Scholar 

  31. Khedher SB, Kilani-Feki O, Dammak M, Jabnoun-Khiareddine H, Daami-Remadi M, Tounsi S (2015) Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. Comptes Rendus Biol 338(12):784–792. https://doi.org/10.1016/j.crvi.2015.09.005

    Article  Google Scholar 

  32. Jasim B, Sreelakshmi S, Mathew J, Radhakrishnan EK (2016) Identification of endophytic Bacillus mojavensis with highly specialized broad spectrum antibacterial activity. 3 Bio Tech 6(2):187. https://doi.org/10.1007/s13205-016-0508-5

    Article  CAS  Google Scholar 

  33. Bacon CW, Hinton DM (2002) Endophytic and biological control potential of Bacillus mojavensis and related species. Biol Control. https://doi.org/10.1006/bcon.2001.1016

    Article  Google Scholar 

  34. Bacon CW, Hinton DM (2007) Potential for control of seedling blight of wheat caused by Fusarium graminearum and related species using the bacterial endophyte Bacillus mojavensis. Biocontrol Sci Tech 17(1):81–94. https://doi.org/10.1080/09583150600937006

    Article  Google Scholar 

  35. Kim KM, Liu J, Go YS, Kang JS (2015) Characterization of Bacillus mojavensis KJS-3 for the promotion of plant growth. J Life Sci 25(8):910–916

    Article  Google Scholar 

  36. Alexander E, Pham D, Steck TR (1999) The viable-but-nonculturable condition is induced by copper in Agrobacterium tumefaciens and Rhizobium leguminosarum. Appl Environ Microbiol 65(8):3754–3756. https://doi.org/10.1128/AEM.65.8.3754-3756.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johri JK, Surange S, Nautiyal CS (1999) Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Curr Microbiol 39(2):89–93. https://doi.org/10.1007/s002849900424

    Article  CAS  PubMed  Google Scholar 

  38. Kobayashi DY, Reedy RM, Bick J, Oudemans PV (2002) Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Environ Microbiol 68(3):1047–1054. https://doi.org/10.1128/AEM.68.3.1047-1054.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bacon CW, Hinton DM, Mitchell TR, Snook ME, Olubajo B (2012) Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers. Biol Control 62(1):1–9. https://doi.org/10.1016/j.biocontrol.2012.03.006

    Article  CAS  Google Scholar 

  40. Ghazala I, Bouassida M, Krichen F, Manuel Benito J, Ellouz-Chaabouni S, Haddar A (2017) Anionic lipopeptides from Bacillus mojavensis I4 as effective antihypertensive agents: production, characterization, and identification. Eng Life Sci 17(12):1244–1253. https://doi.org/10.1002/elsc.201700020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Youcef-ali M, Chaouche NK, Dehimat L, Bataiche I, Mounira KA, Cawoy HE, Thonart P (2014) Antifungal activity and bioactive compounds produced by Bacillus mojavensis and Bacillus subtilis. Afr J Microbiol Res 8(6):476–484. https://doi.org/10.5897/AJMR2013.6327

    Article  CAS  Google Scholar 

  42. Milet A, Chaouche NK, Dehimat L, Kaki AA, Ali MK, Thonart P (2016) Flow cytometry approach for studying the interaction between Bacillus mojavensis and Alternaria alternata. Afr J Biotech 15(26):1417–1428. https://doi.org/10.5897/AJB2015.15129

    Article  Google Scholar 

  43. Tzelepis G, Dubey M, Jensen DF, Karlsson M (2015) Identifying glycoside hydrolase family 18 genes in the mycoparasitic fungal species Clonostachys rosea. Microbiology 161(7):1407–1419. https://doi.org/10.1099/mic.0.000096

    Article  CAS  PubMed  Google Scholar 

  44. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA et al (2011) antiSMASH: rapid identification, annotation, and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucl Acids Res 39(suppl_2):W339–W346. https://doi.org/10.1093/nar/gkr466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Munns R, Gilliham M (2015) Salinity tolerance of crops–what is the cost? New Phytol 208(3):668–673. https://doi.org/10.1111/nph.13519

    Article  CAS  PubMed  Google Scholar 

  46. Bacon CW, Hinton DM (2011) In planta reduction of maize seedling stalk lesions by the bacterial endophyte Bacillus mojavensis. Can J Microbiol 57(6):485–492. https://doi.org/10.1139/w11-031

    Article  CAS  PubMed  Google Scholar 

  47. van den Broek D, Chin-A-Woeng TF, Eijkemans K, Mulders IH, Bloemberg GV, Lugtenberg BJ (2003) Biocontrol traits of Pseudomonas spp. are regulated by phase variation. Mole Plant-microbe Interact 16(11):1003–1012. https://doi.org/10.1094/MPMI.2003.16.11.1003

    Article  Google Scholar 

  48. Kumar A, Verma JP (2018) Does plant-microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52. https://doi.org/10.1016/j.micres.2017.11.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was conducted with the financial support provided by the Ministry of Education and Science of the Russian Federation under the agreement numbers AAAA-A18-118031390148-1 and 121021600147-1. The unique identifier of the project is FMEG-2021-0003.

Author information

Authors and Affiliations

Authors

Contributions

DRGC and ADM carried out the experimental work, statistical analysis, and drafting of the manuscript. B. mojavensis PS17 strain was isolated by KLZ, SRI, and NRM participated in the design of the experiment. VSZ contributed to the design and supervision of the study and also the editing of the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Roderic Gilles C. Diabankana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. Five of the authors, including the corresponding author, hold a patent relating to the organism, Bacillus mojavensis PS17 with the publication number RU0002737208 (https://patents.google.com/patent/RU2737208C1/en?oq=Ru2737208) and also (https://patentscope.wipo.int/search/en/detail.jsf?docId=RU312423747&docAn=20191417).

Ethical Approval

This article does not contain any work done on human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diabankana, R.G.C., Afordoanyi, D.M., Safin, R.I. et al. Antifungal Properties, Abiotic Stress Resistance, and Biocontrol Ability of Bacillus mojavensis PS17. Curr Microbiol 78, 3124–3132 (2021). https://doi.org/10.1007/s00284-021-02578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02578-7

Navigation