Skip to main content
Log in

Streptococcus shenyangsis sp. nov., a New Species Isolated from the Oropharynx of a Healthy Child from Shenyang China

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-positive, catalase-negative, coccus-shaped, chain-forming organism isolated from the oropharynx of a healthy child in Shenyang, China, was subjected to phenotypic and molecular taxonomic analyses. 16S rRNA sequence analysis indicated that this bacterium represents a new member of the genus Streptococcus and is closely related to Streptococcus oralis subsp. dentisani DSM 27088. According to DNA-DNA hybridization analysis, strain D19T was less than 70% similar to other strains with close genetic relationships. Fatty acid analysis, physiological, and biochemical tests showed that strain D19T was different from the published Streptococcus species. The genome of strain D19T is 2,023,003 bp long with a GC content of 39.9 mol%. It contains 1889 protein-coding genes and 50 RNA genes. These results show that Streptococcus shenyangsis sp. nov. strain D19T is a new species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133. https://doi.org/10.1146/annurev.mi.31.100177.000543

    Article  CAS  PubMed  Google Scholar 

  2. Group NHW, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer M (2009) The NIH human microbiome project. Genome Res 19(12):2317–2323. https://doi.org/10.1101/gr.096651.109

    Article  CAS  Google Scholar 

  3. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467. https://doi.org/10.1126/science.1200387

    Article  CAS  PubMed  Google Scholar 

  4. Huse SM, Ye Y, Zhou Y, Fodor AA (2012) A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7(6):e34242. https://doi.org/10.1371/journal.pone.0034242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43(11):5721–5732. https://doi.org/10.1128/JCM.43.11.5721-5732.2005

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mager DL, Ximenez-Fyvie LA, Haffajee AD, Socransky SS (2003) Distribution of selected bacterial species on intraoral surfaces. J Clin Periodontol 30(7):644–654

    Article  PubMed  Google Scholar 

  7. Jin D, Chen C, Li L, Lu S, Li Z, Zhou Z, Jing H, Xu Y, Du P, Wang H, Xiong Y, Zheng H, Bai X, Sun H, Wang L, Ye C, Gottschalk M, Xu J (2013) Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis. BMC Microbiol 13:141. https://doi.org/10.1186/1471-2180-13-141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pontigo F, Moraga M, Flores SV (2015) Molecular phylogeny and a taxonomic proposal for the genus Streptococcus. Genet Mol Res 14(3):10905–10918. https://doi.org/10.4238/2015.September.21.1

    Article  CAS  PubMed  Google Scholar 

  9. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  10. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376. https://doi.org/10.1007/bf01734359

    Article  CAS  PubMed  Google Scholar 

  11. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Felsenstein J (1985) Confidence Limits on Phylogenies: an Approach Using the Bootstrap. Evolution 39(4):783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  13. Facklam R, Elliott JA (1995) Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev 8(4):479–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Freney J, Bland S, Etienne J, Desmonceaux M, Boeufgras JM, Fleurette J (1992) Description and evaluation of the semiautomated 4-hour rapid ID 32 Strep method for identification of streptococci and members of related genera. J Clin Microbiol 30(10):2657–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Charteris WP, Kelly PM, Morelli L, Collins JK (2001) Quality control Lactobacillus strains for use with the API 50CH and API ZYM systems at 37 ℃. J Basic Microbiol 41(5):241–251. https://doi.org/10.1002/1521-4028(200110)41:5%3c241::AID-JOBM241%3e3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  16. Humble MW, King A, Phillips I (1977) API ZYM: a simple rapid system for the detection of bacterial enzymes. J Clin Pathol 30(3):275–277. https://doi.org/10.1136/jcp.30.3.275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713–714. https://doi.org/10.1093/bioinformatics/btn025

    Article  CAS  PubMed  Google Scholar 

  18. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20(2):265–272. https://doi.org/10.1101/gr.097261.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123. https://doi.org/10.1101/gr.089532.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110(10):1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  PubMed  Google Scholar 

  22. Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kampfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60(Pt 1):249–266. https://doi.org/10.1099/ijs.0.016949-0

    Article  CAS  PubMed  Google Scholar 

  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jensen A, Scholz CF, Kilian M (2016) Re-evaluation of the taxonomy of the Mitis group of the genus Streptococcus based on whole genome phylogenetic analyses, and proposed reclassification of Streptococcus dentisani as Streptococcus oralissubsp.dentisanicomb. nov., Streptococcus tigurinusas Streptococcus oralissubsp.tigurinus comb. nov., and Streptococcus oligofermentansas a later synonym ofStreptococcus cristatus. Int J Syst Evol Microbiol 66(11):4803–4820. https://doi.org/10.1099/ijsem.0.001433

    Article  CAS  PubMed  Google Scholar 

  25. Arbique JC, Poyart C, Trieu-Cuot P, Quesne G, Carvalho Mda G, Steigerwalt AG, Morey RE, Jackson D, Davidson RJ, Facklam RR (2004) Accuracy of phenotypic and genotypic testing for identification of Streptococcus pneumoniae and description of Streptococcus pseudopneumoniae sp. nov. J Clin Microbiol 42(10):4686–4696. https://doi.org/10.1128/JCM.42.10.4686-4696.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Austrian R (1960) The Gram stain and the etiology of lobar pneumonia, an historical note. Bacteriol Rev 24(3):261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu Y, Xu X, Lan R, Xiong Y, Ye C, Ren Z, Liu L, Zhao A, Wu LF, Xu J (2013) An O island 172 encoded RNA helicase regulates the motility of Escherichia coli O157:H7. PLoS ONE 8(6):e64211. https://doi.org/10.1371/journal.pone.0064211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Whiley RA, Hardie JM (2009) Genus I. Streptococcus Rosenbach 1884, 22AL. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3. Springer, New York, pp 655–711

    Google Scholar 

  29. Bridge PD, Sneath PHA (1982) Streptococcus gallinarum sp. nov. and Streptococcus oralis sp. nov. Int J Syst Bacteriol 32:410–415

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Liaoning (Grant No. 2017225076) and Shenyang Science and Technology Key Project (Grant No. 18-400409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunling Xiao.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 866 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Xiao, C., Li, X. et al. Streptococcus shenyangsis sp. nov., a New Species Isolated from the Oropharynx of a Healthy Child from Shenyang China. Curr Microbiol 78, 2821–2827 (2021). https://doi.org/10.1007/s00284-021-02500-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02500-1

Navigation