Skip to main content

Advertisement

Log in

Bradyrhizobium japonicum, B. elkanii and B. diazoefficiens Interact with Rice (Oryza sativa), Promote Growth and Increase Yield

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bradyrhizobium is a genus of plant growth-promoting rhizobacteria (PGPR) that have been studied for several decades mainly for the ability to fix diazotrophic nitrogen after having been established endosymbiotically inside root nodules of the legumes of Fabaceae. The aim of this work was to evaluate the capability of Bradyrhizobium to promote the growth of crops belonging to other families, in this case, rice (Oryza sativa), both in laboratory and in field trials. For laboratory test, surface-sterilized rice seeds were soaked with cultures of each strain and planted in pots. Plant length and dry weight were measured after 35 days. For the field test, rice seeds of varieties Yeruá La Plata and Gurí INTA were inoculated with the three best strains observed in the laboratory test and planted in plots. After 60 days of growth, plant length and dry weight were measured. At harvest time, we measured the dry weight of the aerial part, yield and thousand-grain weight. Inoculation with any of the three species described provoked significant increments compared to the uninoculated control at least in one of the parameters measured, both in the laboratory and in the field tests. Bradyrhizobium japonicum E109 was the strain that promoted rice growth the most in the lab while Bradyrhizobium elkanii SEMIA 587 was the strain that promoted rice growth the most in the field, with increments in yield of approximately 1000 kg/ha. Data obtained suggest that the Bradyrhizobium species promoted all rice growth and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gerland P, Raftery AE, Ševčíková H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N (2014) World population stabilization unlikely this century. Science 346:234–237. https://doi.org/10.1126/science.1257469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu X, Wang H, Zhou J, Hu F, Zhu D, Chen Z (2016) Effect of N fertilization pattern on rice yield, N use efficiency and fertilizer–N fate in the Yangtze river basin China. PLoS ONE 11:e0166002. https://doi.org/10.1371/journal.pone.0166002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front Plant Sci 8:1617. https://doi.org/10.3389/fpls.2017.01617

    Article  PubMed  PubMed Central  Google Scholar 

  4. Paungfoo-Lonhienne C, Visser J, Lonhienne TGA, Schmidt S (2012) Past, present and future of organic nutrients. Plant Soil 359:1–18. https://doi.org/10.1007/s11104-012-1357

    Article  CAS  Google Scholar 

  5. Van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x

    Article  PubMed  Google Scholar 

  6. Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21:218–229. https://doi.org/10.1016/j.tplants.2016.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. https://doi.org/10.1111/1574-6976.12028

    Article  CAS  PubMed  Google Scholar 

  8. McNear DH Jr (2013) The rhizosphere-roots, soil and everything in between. Nat Educ Knowl 4:1

    Google Scholar 

  9. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327. https://doi.org/10.1007/s11274-011-0979-9

    Article  CAS  PubMed  Google Scholar 

  10. Pathania N, Gosal SK, Saroa GS, Vikal Y (2014) Molecular characterization of diazotrophic bacteria isolated from rhizosphere of wheat cropping system from central plain region of Punjab. Afr J Microbiol Res 8:862–871. https://doi.org/10.5897/AJMR2013.5948

    Article  CAS  Google Scholar 

  11. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571. https://doi.org/10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  12. Rodriguez-Navarro DN, Oliver IM, Contreras MA, Ruiz-Sainz JE (2010) Soybean interactions with soil microbes, agronomical and molecular aspects. Agron Sustain Dev 31:173–190. https://doi.org/10.1051/agro/2010023

    Article  CAS  Google Scholar 

  13. Jordan D (1982) NOTES: transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139

    Article  Google Scholar 

  14. Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505

    Article  CAS  Google Scholar 

  15. Marçon Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Soares Melo I, Martínez-Romero E, Hungria M (2013) Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 63:3342–3351. https://doi.org/10.1099/ijs.0.049130-0

    Article  CAS  Google Scholar 

  16. Siqueira et al. (2014). Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics 15:420. https://www.biomedcentral.com/1471-2164/15/420.

  17. Halverson LJ, Stacey G (1986) Signal exchange in plant-microbe interactions. Microbiol Rev 50:193–225

    Article  CAS  Google Scholar 

  18. Sadowsky MJ, Tully RE, Cregan PB, Keyser HH (1987) Genetic diversity in Bradyrhizobium japonicum Serogroup 123 and its relation to genotype-specific nodulation of soybean. Appl Environ Microbiol 53:2624–2630

    Article  CAS  Google Scholar 

  19. Itakura M, Saeki K, Omori H, Yokoyama T, Kaneko T, Tabata S, Ohwada T, Tajima S, Uchiumi T, Honnma K, Fujita K, Iwata H, Saeki Y, Hara Y, Ikeda S, Eda S, Mitsui H, Minamisawa K (2009) Genomic comparison of Bradyrhizobium japonicum strains with different symbiotic nitrogen-fixing capabilities and other Bradyrhizobiaceae members. ISME J 3:326–339. https://doi.org/10.1038/ismej.2008.88

    Article  CAS  PubMed  Google Scholar 

  20. Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth-promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). In: Hardarson G, Broughton WJ (eds) Molecular microbial ecology of the soil. Developments in plant and soil sciences. vol 83, Springer, Dordrecht

    Google Scholar 

  21. Chebotar VK, Asis CA Jr, Akao S (2001) Production of growth-promoting substances and high colonization ability of rhizobacteria enhance the nitrogen fixation of soybean when coinoculated with Bradyrhizobium japonicum. Biol Fertil Soils 34:427–432. https://doi.org/10.1007/s00374-001-0426-4

    Article  CAS  Google Scholar 

  22. Tan Z, Hurek T, Vinuesa P, Müller P, Ladha JK, Reinhold-Hurek B (2001) Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S–23S ribosomal DNA intergenic spacer-targeted PCR. Appl Environ Microb 67:3655–3664. https://doi.org/10.1128/AEM.67.8.3655-3664.2001

    Article  CAS  Google Scholar 

  23. Chaintreuil C, Giraud E, Prin Y, Lorquin J, Bâ A, Gillis M, de Lajudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66(12):5437–5447

    Article  CAS  Google Scholar 

  24. Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23:109–117. https://doi.org/10.1264/jsme2.109

    Article  PubMed  Google Scholar 

  25. Sreevidya VS, Hernandez-Oane RJ, So RB, Sullia SB, Stacey G, Ladha JK, Reddy PM (2005) Expression of the legume symbiotic lectin genes psl and gs52 promotes rhizobial colonization of roots in rice. Plant Sci 169:726–736. https://doi.org/10.1016/j.plantsci.2005.05.024

    Article  CAS  Google Scholar 

  26. Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. Blackwell, Oxford

    Google Scholar 

  27. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  28. Sumanta N, Haque CI, Jaishee N, Roy S (2014) Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res J Chem Sci 4:63–69

    Google Scholar 

  29. Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE 7:e42149. https://doi.org/10.1371/journal.pone.0042149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Piromyou P, Greetatorn T, Teamtisong K, Tittabutr P, Boonkerd N, Teaumroong N (2017) Potential of rice stubble as a reservoir of Bradyrhizobial inoculum in rice-legume crop rotation. Appl Environ Microbiol 83:e01488-e1517. https://doi.org/10.1128/AEM.01488-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Filella I, Serrano L, Serra J, Penuelas J (1995) Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci 35:1400–1405

    Article  Google Scholar 

  32. Moran JA, Mitchell AK, Goodmanson G (2000) Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: a comparison of methods. Tree Physiol 20:1113–1120

    Article  CAS  Google Scholar 

  33. Brown SB, Houghton JD, Hendry GAF (1991) Chlorophyll breakdown. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, FL, pp 465–489

    Google Scholar 

  34. Costache MA, Campeanu G, Neata G (2012) Studies concerning the extraction of chlorophyll and total carotenoids from vegetables. Rom Biotechnol Lett 17:7702–7708

    CAS  Google Scholar 

  35. Buckland SM, Price AH, Hendry GAF (1991) The role of ascorbate in drought-treated Cochlearia atlantica Pobed. and Armeria maritima (Mill.) Willd. New Phytol 119:155–160

    Article  CAS  Google Scholar 

  36. Vicaş SI, Laslo V, Pantea S, Bandici GE (2010) Chlorophyll and carotenoids pigments from mistletoe (Viscum album) leaves using different solvents. Analele Universităţii din Oradea Fascicula Biologie 2:213–218.

  37. Hung PQ, Annapurna K (2004) Isolation and characterization of endophytic bacteria in soybean (Glycine sp.). Omonrice 12:92–101

    Google Scholar 

  38. Kobayashi D, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 199–233

    Google Scholar 

  39. Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology 85:695–698

    Article  Google Scholar 

  40. Sturz A, Matheson B (1996) Populations of endophytic bacteria which influence host-resistance to Erwinia-induced bacterial soft rot in potato tubers. Plant Soil 184:265–271

    Article  CAS  Google Scholar 

  41. Kirchhof G, Reis VM, Baldani JI, Eckert B, Döbereiner J, Hartmann A (1997) Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. In: Ladha JK et al (eds) Opportunities for biological nitrogen fixation in rice and other non-legumes. Developments in plant and soil sciences. vol 75, Springer, Dordrecht, pp 45–55

    Chapter  Google Scholar 

  42. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    Article  CAS  Google Scholar 

  43. Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soil 25:13–19

    Article  Google Scholar 

  44. Devine TE, Kuykendall LD, O’Neill JJ (1988) DNA homology group and the identity of Bradyrhizobial strains producing rhizobitoxine-induced foliar chlorosis on soybean. Crop Sci 28:938–939

    Article  Google Scholar 

  45. Sessitsch A, Mitter B (2015) 21st century agriculture: integration of plant microbiomes for improved crop production and food security. Microb Biotechnol 8:32–33. https://doi.org/10.1111/1751-7915.12180

    Article  PubMed  Google Scholar 

  46. Mbai FN, Magiri EN, Matiru VN, Ng’ang’a J, Nyambati VCS (2013) Isolation and characterisation of bacterial root endophytes with potential toenhance plant growth from Kenyan Basmati rice. Am Int J Contemp Res 3:25–40

    Google Scholar 

  47. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  Google Scholar 

  48. Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  49. Ai’shah ON, Amir HG, Keng CL, Othman AR (2010) Influence of various combinations of diazotrophs and chemical N fertilizer on plant growth and N2 fixation capacity of oil palm seedlings (Elaeis guineensis Jacq.). Thai J Agric Sci 42:139–149

    Google Scholar 

Download references

Acknowledgements

D.P. was supported by a grant from National Science Foundation, Colombo, Sri Lanka. J.M.R. was supported by a grant from the International Centre for Genetic Engineering and Biotechnology (ICGEB), Buenos Aires, Argentina. P.A.B. is a scientist supported by the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. This research was also possible thanks to funds made available by ICGEB and the support from the Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya, Sri Lanka, and Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (FCAyF).

Author information

Authors and Affiliations

Authors

Contributions

DP performed the experiments in the laboratory; JMR and RB followed the field trials; SG, PAB and GD planned the experiments, elaborated the results and wrote the manuscript.

Corresponding author

Correspondence to Giuliano Degrassi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padukkage, D., Geekiyanage, S., Reparaz, J.M. et al. Bradyrhizobium japonicum, B. elkanii and B. diazoefficiens Interact with Rice (Oryza sativa), Promote Growth and Increase Yield. Curr Microbiol 78, 417–428 (2021). https://doi.org/10.1007/s00284-020-02249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02249-z

Navigation