Skip to main content
Log in

Luteimonas cellulosilyticus sp. nov., Cellulose-Degrading Bacterium Isolated from Soil in Changguangxi National Wetland Park, China

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-negative, motile, aerobic, and rod-shaped strain (MIC 1.5T) was isolated from soil in Changguangxi national wetland park. Growth occurred at 20–45 °C, at pH 6.0–8.0, and at 0–4.0% NaCl. Based on 16S rRNA gene sequence analysis, strain MIC 1.5T was related to were identified as Luteimonas dalianensis CGMCC 1.12191T (95.3%), Luteimonas padinae DSM 101536T (94.5%), Luteimonas huabeiensis DSM 26429T (94.1%), and Luteimonas mephitis DSM 12574T (92.5%). The DNA-DNA relatedness values between strain MIC 1.5T , and these strains were well below 31%. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G+C content of strain MIC 1.5T was 66.3 mol%. Average nucleotide identity (ANI) and genome-to-genome distance (GGD) values between strain MIC 1.5T and L. dalianensis CGMCC 1.12191T were 65.39% and 29.52%, respectively. The quinone was identified as Q-8. The major fatty acids were iso-C15:0, iso-C15:0 3OH, and iso-C17:0 3OH and summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH). Based on the phylogenetic, physiological, and chemotaxonomic results, strain MIC 1.5T represents a novel species of the genus Luteimonas, for which the name Luteimonas cellulosilyticus sp. nov. is proposed. The type strain is MIC 1.5T (= KACC 19469T = CCTCC AB 2017256T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Finkmann W, Altendorf K, Stackebrandt E, Lipski A (2000) Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp nov., Luteimonas mephitis gen. nov., sp nov and Pseudoxanthomonas broegbernensis gen. nov., sp nov. Int J Syst Evol Microbiol 50:273–282

    Article  CAS  Google Scholar 

  2. Parte AC (2013) LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42(D1):D613–D616

    Article  Google Scholar 

  3. Xin Y, Cao X, Wu P, Xue S (2014) Luteimonas dalianensis sp. nov., an obligate marine bacterium isolated from seawater. J Microbiol 52(9):729–733

    Article  CAS  Google Scholar 

  4. Verma A, Ojha AK, Kumari P, Sundharam SS, Mayilraj S, Krishnamurthi S (2016) Luteimonas padinae sp. nov., an epiphytic bacterium isolated from an intertidal macroalga. Int J Syst Evol Microbiol 66(12):5444–5451

    Article  CAS  Google Scholar 

  5. Wu G, Liu Y, Li Q, Du H, You J, Li H, Ke C, Zhang X, Yu J, Zhao T (2013) Luteimonashuabeiensis sp. nov., isolated from stratum water. Int J Syst Evol Microbiol 63(9):3352–3357

    Article  CAS  Google Scholar 

  6. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    Article  CAS  Google Scholar 

  7. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617

    Article  CAS  Google Scholar 

  8. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  Google Scholar 

  9. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376

    Article  CAS  Google Scholar 

  10. Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Biol 18(1):1–32

    Article  Google Scholar 

  11. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  Google Scholar 

  12. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39(2):159–167

    Article  CAS  Google Scholar 

  13. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39(3):224–229

    Article  Google Scholar 

  14. Stabili L, Gravili C, Tredici SM, Piraino S, Talà A, Boero F, Alifano P (2008) Epibiotic Vibrio luminous bacteria isolated from some Hydrozoa and Bryozoa species. Microb Ecol 56(4):625–636

    Article  CAS  Google Scholar 

  15. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123

    Article  CAS  Google Scholar 

  16. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14(1):60

    Article  Google Scholar 

  17. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44(4):992–993

    Article  CAS  Google Scholar 

  18. Skerman VBD (1967) A Guide to the Identification of the Genera of Bacteria, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  19. Yan ZF, Lin P, Li CT, Kook M, Yi TH (2018) Actinotalea solisilvae sp. nov., isolated from forest soil and emended description of the genus Actinotalea. Int J Syst Evol Microbiol 68:788–794

    Article  CAS  Google Scholar 

  20. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703

    Article  CAS  Google Scholar 

  21. Yan ZF, Lin P, Chu X, Kook MC, Li CT, Yi TH (2016) Aeromicrobium halotolerans sp. nov., isolated from desert soil sample. Arch Microbiol 198(5):423–427

    Article  CAS  Google Scholar 

  22. Yan ZF, Trinh H, Moya G, Lin P, Li CT, Kook MC, Yi TH (2015) Lysobacter rhizophilus sp. nov., isolated from rhizosphere soil of mugunghwa, the nationalflower of South Korea. Int J Syst Evol Microbiol 66(11):4754–4759

    Article  Google Scholar 

  23. Minnikin DE, O’donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2(5):233–241

    Article  CAS  Google Scholar 

  24. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48(3):459–470

    Article  CAS  Google Scholar 

  25. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI Inc

  26. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100(2):221–230

    Article  CAS  Google Scholar 

  27. Hu HY, Lim BR, Goto N, Fujie K (2001) Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47(1):17–24

    Article  CAS  Google Scholar 

  28. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5(12):2359–2367

    Article  CAS  Google Scholar 

  29. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37(4):463–464

    Article  Google Scholar 

  30. Verma A, Ojha AK, Kumari P, Sundharam SS, Mayilraj S, Krishnamurthi S (2016) Luteimonas padinae sp nov., an epiphytic bacterium isolated from an intertidal macroalga. Int J Syst Evol Microbiol 66:5444–5451

    Article  CAS  Google Scholar 

  31. Wu G, Liu Y, Li Q, Du H, You J, Li H, Ke C, Zhang X, Yu J, Zhao T (2013) Luteimonas huabeiensis sp. nov., isolated from stratum water. Int J Syst Evol Microbiol 63(9):3352–3357

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Research Program of State Key Laboratory of Food Science and Technology, Jiangnan University (No. SKLF-ZZA-201906), and Fundamental Research Funds for the Central Universities (Nos. JUSRP11968 and JUSRP11961)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei Lin or Zheng-Fei Yan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. The responsible authorities of Changguangxi national wetland park declare no conflicts of interest in soil sample obtained from park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, P., Yan, ZF. & Li, CT. Luteimonas cellulosilyticus sp. nov., Cellulose-Degrading Bacterium Isolated from Soil in Changguangxi National Wetland Park, China. Curr Microbiol 77, 1341–1347 (2020). https://doi.org/10.1007/s00284-020-01934-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01934-3

Navigation