Skip to main content
Log in

Aureimonas leprariae sp. nov., Isolated from a Lepraria sp. Lichen

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-negative, motile, aerobic and coccoid rod-shaped bacterium, designated strain YIM132180T, was isolated from a Lepraria sp. lichen collected from Pu’er, Yunnan Province, China. The strain grew at 15–35 °C (optimum, 25–28 °C), at 0–2% (w/v) NaCl (optimum, 0–1%) and at pH 6.0–9.0 (optimum, pH 7.0). The 16S rRNA gene sequence showed that strain YIM132180T had highest similarity (96.4%) with Aureimonas endophytica 2T4P-2-4T, followed by Aureimonas ureilytica NBRC 106430T (95.7%) and Aureimonas rubiginis CC-CFT034T (95.6%). Phylogenetic analysis showed that the strain grouped with species of the genus Aureimonas. The genomic sequence was 4,779,519 bp and contained 4584 coding sequences (CDSs), 54 RNA genes, 3 complete rRNA genes and 47 tRNA genes. The major fatty acids (>10%) of strain YIM132180T were C18:1ω7c, C-16:0 and C19:0 cyclo ω8c. The predominant menaquinone was ubiquinone 10 (Q-10). The polar lipid profile comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, unidentified phospholipid, amino lipid, lipid and most importantly sulfoquinovosyldiacylglycerol (SQDG). Based on the draft genome sequence, the G +C content of strain YIM132180T was 68.4 mol%. The results of the polyphasic taxonomic study, including phenotypic, chemotaxonomic, and phylogenetic analyses, showed that strain YIM132180T represents a novel species of the genus Aureimonas, for which the name Aureimonas leprariae sp. nov. is proposed. The type strain is YIM 132180T (=KCTC 72462T = CGMCC 1.17389T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Denner EB, Smith GW, Busse HJ, Schumann P, Narzt T, Polson SW (2003) Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on caribbean scleractinian corals. Int J Syst Evol Microbiol 53:1115–1122

    Article  CAS  Google Scholar 

  2. Cho JC, Giovannoni SJ (2003) Fulvimarina pelagi gen. nov., sp. nov., a marine bacterium that forms a deep evolutionary lineage of descent in the order “Rhizobiales”. Int J Syst Evol Microbiol 53:1853–1859

    Article  CAS  Google Scholar 

  3. Rivas R, Sanchez-Márquez S, Mateos PF, Martínez-Molina E, Velázquez E (2005) Martelella mediterranea gen. nov., sp. nov., a novel alpha-proteobacterium isolated from a subterranean saline lake. Int J Syst Evol Microbiol 55:955–959

    Article  CAS  Google Scholar 

  4. Rathsack K, Reitner J, Stackebrandt E, Tindall BJ et al (2011) Reclassification of Aurantimonas altamirensis (Jurado, 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. Int J Syst Evol Microbiol 61:2722–2728

    Article  CAS  Google Scholar 

  5. Liang J, Liu J, Zhang XH (2015) Jiella aquimaris gen. nov., sp. nov., isolated from offshore surface seawater. Int J Syst Evol Microbiol 65:1127–1132

    Article  CAS  Google Scholar 

  6. Li FN, Liao S, Guo M, Tuo L, Yan X, Li W, Jin T, Lee SM, Sun CH (2018) Mangrovicella endophytica gen. nov., sp. nov., a new member of the family Aurantimonadaceae isolated from Aegiceras corniculatum. Int J Syst Evol Microbiol 68:2838–2845

    Article  CAS  Google Scholar 

  7. Madhaiyan M, Hu CJ, Jegan Roy J, Kim SJ, Weon HY et al (2013) Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. Int J Syst Evol Microbiol 63:1702–1708

    Article  CAS  Google Scholar 

  8. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al (2013) Aureimonas ferruginea sp. nov. and Aureimonas rubiginis sp. nov., two siderophore-producing bacteria isolated from rusty iron plates. Int J Syst Evol Microbiol 63:2430–2435

    Article  CAS  Google Scholar 

  9. Cho Y, Lee I, Yang YY, Baek K, Yoon SJ et al (2015) Aureimonas glaciistagni sp. nov., isolated from a melt pond on Arctic sea ice. Int J Syst Evol Microbiol 65:3564–3569

    Article  Google Scholar 

  10. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al (2016) Aureimonas galii sp. nov. and Aureimonas pseudogalii sp. nov. isolated from the phyllosphere of Galium album. Int J Syst Evol Microbiol 66:3345–3354

    Article  CAS  Google Scholar 

  11. Guo B, Liu Y, Gu Z, Shen L, Liu K et al (2017) Aureimonas glaciei sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 67:485–488

    Article  CAS  Google Scholar 

  12. Li FN, Tuo L, Pan Z, Guo M, Lee SMY, Chen L, Hu L, Sun CH (2017) Aureimonas endophytica sp. nov., a novel endophytic bacterium isolated from Aegiceras corniculatum. Int J Syst Evol Microbiol 67:2934–2940

    Article  CAS  Google Scholar 

  13. Li Y, Xu G, Lin C, Wang X, Piao CG (2018) Aureimonas populi sp. nov., isolated from poplar tree bark. Int J Syst Evol Microbiol 68:487–491

    Article  CAS  Google Scholar 

  14. Liu CB, Jiang Y, Wang XY, Chen DB, Chen X, Wang LS, Han L, Huang XS, Jiang CL (2017) Diversity, antimicrobial activity, and biosynthetic potential of cultivable actinomycetes with lichen symbiosis. Microb Ecol 74:570–584

    Article  CAS  Google Scholar 

  15. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509

    Article  CAS  Google Scholar 

  16. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  17. Leifson E (1960) Atlas of bacterial flagellation. Academic, New York

    Book  Google Scholar 

  18. Murray RGE, Doetsch RN, Robinow CF (1994) Determinative and cytological light microscopy. In: Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

  19. Choi JH, Seok JH, Cha JH, Cha CJ (2014) Lysobacter panacisoli sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 64:2193–2197

    Article  CAS  Google Scholar 

  20. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153

    Article  CAS  Google Scholar 

  21. Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al (eds) Methods for general and molecular microbiology. American Society for Microbiology, Washington, DC

  22. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428

    Article  Google Scholar 

  23. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  Google Scholar 

  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  26. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  Google Scholar 

  27. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  28. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  Google Scholar 

  29. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  Google Scholar 

  30. Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676

    Article  CAS  Google Scholar 

  31. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, Technical Note 101. MIDI, Newark

    Google Scholar 

  32. Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  33. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  Google Scholar 

  34. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367

    Article  CAS  Google Scholar 

  35. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by National Natural Science Foundation of China (31460005).

Author information

Authors and Affiliations

Authors

Contributions

KZ: performed the experiments and wrote the manuscript; L-QJ and G-DL: analysed the data; S-BS and Q-YL: performed the study; D-FA and LL: analysed the data; X-YW: collected the lichen samples; L-SW: identified the lichen samples; YJ: guided the experiments and revised the manuscript; C-LJ: designed the study.

Corresponding author

Correspondence to Yi Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain YIM 132180T is MN495985 and the genome sequence is VZDO00000000.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 14648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Jiang, LQ., Wang, LS. et al. Aureimonas leprariae sp. nov., Isolated from a Lepraria sp. Lichen. Curr Microbiol 77, 313–319 (2020). https://doi.org/10.1007/s00284-019-01826-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01826-1

Navigation