Skip to main content
Log in

Biodesulfurization of Thiophenic Compounds by a 2-Hydroxybiphenyl-Resistant Gordonia sp. HS126-4N Carrying dszABC Genes

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Microorganisms can metabolize or transform a range of known chemical compounds present in fossil fuels by naturally having highly specific metabolic activities. In this context, the microbial desulfurization of fuels is an attractive and alternative process to the conventional hydrodesulfurization (HDS) process, since the thiophenic sulfur containing compounds such as dibenzothiophene (DBT) and benzothiophene (BT) cannot be removed by HDS. A DBT desulfurizing mesophilic bacterium, identified on the basis of 16S rRNA gene sequence as Gordonia sp. HS126-4N (source: periphery soil of a coal heap) has been evaluated for its biodesulfurization traits and potential to desulfurize the thiophenic compounds. The HPLC and LC/MS analyses of the metabolites produced from DBT desulfurization and PCR-based nucleotide sequence confirmation of the key desulfurizing genes (dszA/dszB/dszC) proved that HS126-4N could convert DBT to 2-hydroxybiphenyl (2-HBP) via the 4S pathway. The isolate could convert 0.2 mM of DBT to 2-HBP within 48 h and was reasonably tolerant against the inhibitory effect of 2-HBP (retained 70% of growth at 0.5 mM 2-HBP). The isolated biocatalyst desulfurized/degraded 100% of 0.2 mM of 4-methyl DBT, 2,8-dimethyl DBT, BT and 3-methyl BT within 108 h. The capabilities to survive and desulfurize a broad range of thiophenic sulfur containing substrates as well as less inhibition by the 2-HBP suggest that HS126-4N could be a potential candidate for improved biodesulfurization/organic sulfur removal from fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abin-Fuentes A, Mohamed ME, Wang DIC, Prather KLJ (2013) Exploring the mechanism of biocatalyst inhibition in microbial desulfurization. Appl Environ Microbiol 79:7807–7817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aggarwal S, Karimi IA, Ivan GR (2013) In silico modeling and evaluation of Gordonia alkanivorans for biodesulfurization. Mol Biosyst 9:2530–2540

    Article  CAS  PubMed  Google Scholar 

  3. Akhtar N, Ghauri MA, Akhtar K (2016) Dibenzothiophene desulfurization capability and evolutionary divergence of newly isolated bacteria. Arch Microbiol 198:509–519

    Article  CAS  PubMed  Google Scholar 

  4. Akhtar N, Ghauri MA, Anwar MA, Akhtar K (2009) Analysis of the dibenzothiophene metabolic pathway in a newly isolated Rhodococcus spp. FEMS Microbiol Lett 301:95–102

    Article  CAS  PubMed  Google Scholar 

  5. Akhtar N, Ghauri MA, Anwar MA, Heaphy S (2015) Phylogenetic characterization and novelty of organic sulfur metabolizing genes of Rhodococcus spp. (Eu-32). Biotechnol Lett 37:837–847

    Article  CAS  PubMed  Google Scholar 

  6. Alves L, Salgueiro R, Rodrigues C, Mesquita E, Matos J, Girio FM (2005) Desulfurization of dibenzothiophene, benzothiophene, and other thiophene analogs by a newly isolated bacterium, Gordonia alkanivorans strain 1B. Appl Biochem Biotechnol 120:199–208

    Article  CAS  PubMed  Google Scholar 

  7. Bahuguna A, Lily MK, Munjal A, Singh RN, Dangwal K (2011) Desulfurization of dibenzothiophene (DBT) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil. J Environ Sci 23:975–982

    Article  CAS  Google Scholar 

  8. Bhatia S, Sharma DK (2010) Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3. Biochem Eng J 50:104–109

    Article  CAS  Google Scholar 

  9. Carvajal P, Dinamarca MA, Baeza P, Camú E, Ojeda J (2017) Removal of sulfur-containing organic molecules adsorbed on inorganic supports by Rhodococcus Rhodochrous spp. Biotechnol Lett 39:241–245

    Article  CAS  PubMed  Google Scholar 

  10. Chen H, Zhang WJ, Cai YB, Zhang Y, Li W (2008) Elucidation of 2-hydroxybiphenyl effect on dibenzothiophene desulfurization by Microbacterium sp. strain ZD-M2. Bioresource Technol 99:6928–69233

    Article  CAS  Google Scholar 

  11. Drzyzga O (2012) The strengths and weaknesses of Gordonia: a review of an emerging genus with increasing biotechnological potential. Crit Rev Microbiol 38:300–316

    Article  CAS  PubMed  Google Scholar 

  12. Feng S, Yang H, Zhan X, Wang W (2016) Enhancement of dibenzothiophene biodesulfurization by weakening the feedback inhibitions effects based on a systematic understanding of the biodesulfurization mechanism by Gordonia sp. through the potential “4S” pathway. RSC Adv 6:82872–82881

    Article  CAS  Google Scholar 

  13. Gallagher JR, Olson ES, Stanley DC (1993) Microbial desulfurization of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol Lett 107:31–35

    Article  CAS  PubMed  Google Scholar 

  14. Gilbert SC, Morton J, Buchanan S, Oldfield C, McRoberts A (1998) Isolation of a unique benzothiophene-desulphurizing bacterium, Gordonia sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology 144:2545–2553

    Article  CAS  PubMed  Google Scholar 

  15. Gunam IBW, Yaku Y, Hirano M, Yamamura K, Tomita F, Sone T, Asano K (2006) Biodesulfurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b. J Biosci Bioeng 101:322–327

    Article  CAS  PubMed  Google Scholar 

  16. Ishii Y, Kozaki S, Furuya T, Kino K, Kirimura K (2005) Thermophilic biodesulfurization of various heterocyclic sulfur compounds and crude straight-run light gas oil fraction by a newly isolated strain Mycobacterium phlei WU-0103. Curr Microbiol 50:63–70

    Article  CAS  PubMed  Google Scholar 

  17. Kilbane JJ II (2017) Biodesulfurization: how to make it work? Arabian J Sci Eng 42:1–9

    Article  CAS  Google Scholar 

  18. Kilbane JJ, Robbins J (2007) Characterization of the dszABC genes of Gordonia amicalis F.5.25.8 and identification of conserved protein and DNA sequences. Appl Microbiol Biotechnol 75:843–851

    Article  CAS  PubMed  Google Scholar 

  19. Konishi J, Onaka T, Ishii Y, Suzuki M (2000) Demonstration of the carbon-sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp. strain A11–2 capable of desulfurizing dibenzothiophene. FEMS Microbiol Lett 187:151–154

    Article  CAS  PubMed  Google Scholar 

  20. Li F, Xu P, Feng J, Meng L, Zheng Y, Luo L, Ma C (2005) Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Appl Environ Microbiol 71:276–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li W, Zhang Y, Wang MD, Shi Y (2005) Biodesulfurization of dibenzothiophene and other organic sulfur compounds by a newly isolated Microbacterium strain ZD-M2. FEMS Microbiol Lett 247:45–50

    Article  CAS  PubMed  Google Scholar 

  22. Mishra S, Pradhan N, Panda S, Akcil A (2016) Biodegradation of dibenzothiophene and its application in the production of clean coal. Fuel Process Technol 152:325–342

    Article  CAS  Google Scholar 

  23. Mohamed ME-S, Al-Yacoub ZH, Vedakumar JV (2015) Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria. Front Microbiol 6:1–12

    Article  Google Scholar 

  24. Mohebali G, Ball AS (2008) Biocatalytic desulfurization (BDS) of petrodiesel fuels. Microbiol 154:2169–2183

    Article  CAS  Google Scholar 

  25. Piddington CS, Kovacevich BR, Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp strain IGTS8. Appl Environ Microbiol 61:468–475

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka Y, Matsui T, Konishi J, Maruhashi K, Kurane R (2002) Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain. Appl Microbiol Biotechnol 59:325–328

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka Y, Onaka T, Matsui T, Maruhashi K, Kurane R (2001) Desulfurization of benzothiophene by the Gram-negative bacterium, Sinorhizobium sp. KT55. Curr Microbiol 43:187–191

    Article  CAS  PubMed  Google Scholar 

  29. Wang W, Ma T, Lian K, Zhang Y, Tian H, Ji K, Li G (2013) Genetic analysis of benzothiophene biodesulfurization pathway of Gordonia terrae strain C-6. PLoS ONE 8:e84386

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research work was supported by International Foundation for Science (IFS), Stockholm, Sweden through a Grant to Dr. Nasrin Akhtar (Agreement No. F/5379-1) and co-supported by the Committee on Scientific and Technological Cooperation (COMSTECH), Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Akhtar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1311 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, N., Akhtar, K. & Ghauri, M.A. Biodesulfurization of Thiophenic Compounds by a 2-Hydroxybiphenyl-Resistant Gordonia sp. HS126-4N Carrying dszABC Genes. Curr Microbiol 75, 597–603 (2018). https://doi.org/10.1007/s00284-017-1422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1422-8

Navigation