Skip to main content

Advertisement

Log in

Proteomic Analysis Revealed the Fruiting-Body Protein Profile of Auricularia polytricha

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Auricularia polytricha is one of the most widely cultivated edible mushrooms in China. Many advances have been made to A. polytricha, but there is still no proteomic information of this species. Our current understanding was based upon the translated information of its transcriptome or other relative species. This study presented the proteomic information of fruiting-body proteins by shotgun liquid chromatography and tandem mass spectrometry (LC–MS/MS), which identified 15,508 peptides corresponding to 1850 high-confidence proteins. Of these, 1383 were annotated across the GO subcategories with 829 (44.81%) involved in biological process, 908 (49.08%) in molecular function, and 406 (21.95%) in cellular components. Among these high-confidence proteins, 132 proteins were annotated as carbohydrate-active enzymes, of which 51 were secreted enzymes. Moreover, a number of commercially important enzymes were detected, functioning as auxiliary activity (AA) family 5 glyoxal oxidase, AA5 galactose oxidase, glycoside hydrolase (GH) family 20 hexosaminidase, and GH47 alpha-mannosidase. To the best of our knowledge, this is the first study to characterize A. polytricha proteome, and also fills the gap of our knowledge on the under-developed mushroom species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abd Razak DL, Abdullah N, Khir Johari NM, Sabaratnam V (2013) Comparative study of mycelia growth and sporophore yield of Auricularia polytricha (Mont.) Sacc on selected palm oil wastes as fruiting substrate. Appl Microbiol Biotechnol 97(7):3207–3213. doi:10.1007/s00253-012-4135-8

    Article  PubMed  Google Scholar 

  2. Bengtsson O, Arntzen MO, Mathiesen G, Skaugen M, Eijsink VG (2016) A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates. J Proteom 131:104–112. doi:10.1016/j.jprot.2015.10.017

    Article  CAS  Google Scholar 

  3. Bennett L, Sheean P, Zabaras D, Head R (2013) Heat-stable components of wood ear mushroom, Auricularia polytricha (higher Basidiomycetes), inhibit in vitro activity of beta secretase (BACE1). Int J Med Mushrooms 15(3):233–249

    Article  CAS  PubMed  Google Scholar 

  4. Cetica P, Pintos L, Dalvit G, Beconi M (2003) Involvement of enzymes of amino acid metabolism and tricarboxylic acid cycle in bovine oocyte maturation in vitro. Reproduction 126(6):753–763

    Article  CAS  PubMed  Google Scholar 

  5. Chang ST, Quimio TH (1982) Tropical mushrooms, biological nature and cultivation methods, 1st edn. The Chinese University Press, Hong Kong

    Google Scholar 

  6. Chellappan DK, Ganasen S, Batumalai S, Candasamy M, Krishnappa P, Dua K, Chellian J, Gupta G (2016) The protective action of the aqueous extract of Auricularia polytricha in paracetamol induced hepatotoxicity in rats. Recent Pat Drug Deliv Formul 10(1):72–76

    Article  CAS  PubMed  Google Scholar 

  7. Chiu WC, Yang HH, Chiang SC, Chou YX, Yang HT (2014) Auricularia polytricha aqueous extract supplementation decreases hepatic lipid accumulation and improves antioxidative status in animal model of nonalcoholic fatty liver. Biomedicine (Taipei) 4:12. doi:10.7603/s40681-014-0012-3

    Article  Google Scholar 

  8. Collins C, Keane TM, Turner DJ, O’Keeffe G, Fitzpatrick DA, Doyle S (2013) Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria mellea: toward a new infection model system. J Proteome Res 12(6):2552–2570. doi:10.1021/pr301131t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Day J, Gietz RD, Rampitsch C (2015) Proteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling. Proteome Sci 13:3

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dong M, Gu J, Zhang L, Chen P, Liu T, Deng J, Lu H, Han L, Zhao B (2014) Data in support of comparative proteomics analysis of superior and inferior spikelets in hybrid rice during grain filling and response of inferior spikelets to drought stress using isobaric tags for relative and absolute quantification. Data Brief 1:51–55. doi:10.1016/j.dib.2014.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  11. Erjavec J, Kos J, Ravnikar M, Dreo T, Sabotic J (2012) Proteins of higher fungi-from forest to application. Trends Biotechnol 30(5):259–273. doi:10.1016/j.tibtech.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  12. Fan S, Meng Y, Song M, Pang C, Wei H, Liu J, Zhan X, Lan J, Feng C, Zhang S, Yu S (2014) Quantitative phosphoproteomics analysis of nitric oxide-responsive phosphoproteins in cotton leaf. PLoS One 9(4):e94261. doi:10.1371/journal.pone.0094261

    Article  PubMed  PubMed Central  Google Scholar 

  13. Galli E, Di Mario F, Rapana P, Lorenzoni P, Angelini R (2003) Copper biosorption by Auricularia polytricha. Lett Appl Microbiol 37(2):133–137

    Article  CAS  PubMed  Google Scholar 

  14. Hohmann L, Sherwood C, Eastham A, Peterson A, Eng JK, Eddes JS, Shteynberg D, Martin DB (2009) Proteomic analyses using Grifola frondosa metalloendoprotease Lys-N. J Proteome Res 8(3):1415–1422. doi:10.1021/pr800774h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Horie K, Rakwal R, Hirano M, Shibato J, Nam HW, Kim YS, Kouzuma Y, Agrawal GK, Masuo Y, Yonekura M (2008) Proteomics of two cultivated mushrooms Sparassis crispa and Hericium erinaceum provides insight into their numerous functional protein components and diversity. J Proteome Res 7(5):1819–1835. doi:10.1021/pr070369o

    Article  CAS  PubMed  Google Scholar 

  16. Huang H, Cao L, Wan Y, Zhang R, Wang W (2012) Biosorption behavior and mechanism of heavy metals by the fruiting body of jelly fungus (Auricularia polytricha) from aqueous solutions. Appl Microbiol Biotechnol 96(3):829–840. doi:10.1007/s00253-011-3846-6

    Article  CAS  PubMed  Google Scholar 

  17. Jiang J, Kuo CL, Wu L, Franke C, Kallemeijn WW, Florea BI, van Meel E, van der Marel GA, Codee JD, Boot RG, Davies GJ, Overkleeft HS, Aerts JM (2016) Detection of active mammalian GH31 alpha-glucosidases in health and disease using in-class, broad-spectrum activity-based probes. ACS Cent Sci 2(5):351–358. doi:10.1021/acscentsci.6b00057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Katsimpouras C, Dimarogona M, Petropoulos P, Christakopoulos P, Topakas E (2016) A thermostable GH26 endo-beta-mannanase from Myceliophthora thermophila capable of enhancing lignocellulose degradation. Appl Microbiol Biotechnol 100(19):8385–8397. doi:10.1007/s00253-016-7609-2

    Article  CAS  PubMed  Google Scholar 

  19. Kuuskeri J, Hakkinen M, Laine P, Smolander OP, Tamene F, Miettinen S, Nousiainen P, Kemell M, Auvinen P, Lundell T (2016) Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. Biotechnol Biofuels 9(1):192. doi:10.1186/s13068-016-0608-9

    Article  PubMed  PubMed Central  Google Scholar 

  20. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):41. doi:10.1186/1754-6834-6-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin YL, Wen TN, Chang ST, Chu FH (2011) Proteomic analysis of differently cultured endemic medicinal mushroom Antrodia cinnamomea T.T. Chang et W.N. Chou from Taiwan. Int J Med Mushrooms 13(5):473–481

    Article  CAS  PubMed  Google Scholar 

  22. Liu JY, Chang MC, Meng JL, Feng CP, Liu YN (2016) iTRAQ-based comparative proteomics analysis of the fruiting dikaryon and the non-fruiting monokaryon of Flammulina velutipes. Curr Microbiol. doi:10.1007/s00284-016-1164-z

    Google Scholar 

  23. Mahajan S, Master ER (2010) Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose. Appl Microbiol Biotechnol 86(6):1903–1914. doi:10.1007/s00253-010-2516-4

    Article  CAS  PubMed  Google Scholar 

  24. Merhej J, Richard-Forget F, Barreau C (2011) The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum. Fungal Genet Biol 48(3):275–284. doi:10.1016/j.fgb.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  25. Mori T, Guo M, Li X, Mori E (2002) Human malignant cell death by apoptosis-inducing nucleosides from the decidua derived CD57(+)HLA-DR(bright) natural suppressor cell line. J Reprod Immunol 53(1–2):289–303

    Article  CAS  PubMed  Google Scholar 

  26. O’Brien M, Grogan H, Kavanagh K (2014) Proteomic response of Trichoderma aggressivum f europaeum to Agaricus bisporus tissue and mushroom compost. Fungal Biol 118(9–10):785–791. doi:10.1016/j.funbio.2014.06.004

    Article  PubMed  Google Scholar 

  27. Ogura K, Yamasaki M, Yamada T, Mikami B, Hashimoto W, Murata K (2009) Crystal structure of family 14 polysaccharide lyase with pH-dependent modes of action. J Biol Chem 284(51):35572–35579. doi:10.1074/jbc.M109.068056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ospina-Giraldo MD, Griffith JG, Laird EW, Mingora C (2010) The CAZyome of Phytophthora spp.: a comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora. BMC Genom 11:525. doi:10.1186/1471-2164-11-525

    Article  Google Scholar 

  29. Pan R, Cao L, Huang H, Zhang R, Mo Y (2010) Biosorption of Cd, Cu, Pb, and Zn from aqueous solutions by the fruiting bodies of jelly fungi (Tremella fuciformis and Auricularia polytricha). Appl Microbiol Biotechnol 88(4):997–1005. doi:10.1007/s00253-010-2821-y

    Article  CAS  PubMed  Google Scholar 

  30. Peng W, He X, Wang Y, Zhang Y, Ye X, Jia D, Guo Y, Gan B, Zheng C, Yang Z, Sun Q (2014) A new species of Scytalidium causing slippery scar on cultivated Auricularia polytricha in China. FEMS Microbiol Lett 359(1):72–80. doi:10.1111/1574-6968.12564

    Article  CAS  PubMed  Google Scholar 

  31. Rahmad N, Al-Obaidi JR, Nor Rashid NM, Zean NB, Mohd Yusoff MH, Shaharuddin NS, Mohd Jamil NA, Mohd Saleh N (2014) Comparative proteomic analysis of different developmental stages of the edible mushroom Termitomyces heimii. Biol Res 47:30. doi:10.1186/0717-6287-47-30

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rustiguel CB, Rosa JC, Jorge JA, de Oliveira AH, Guimaraes LH (2016) Secretome analysis of Metarhizium anisopliae under submerged conditions using bombyx mori chrysalis to induce expression of virulence-related proteins. Curr Microbiol 72(2):220–227. doi:10.1007/s00284-015-0943-2

    Article  CAS  PubMed  Google Scholar 

  33. Sermsathanaswadi J, Baramee S, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Kosugi A (2017) The family 22 carbohydrate-binding module of bifunctional xylanase/beta-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation. Enzyme Microb Technol 96:75–84. doi:10.1016/j.enzmictec.2016.09.015

    Article  CAS  PubMed  Google Scholar 

  34. Shi H, Zhang Y, Xu B, Tu M, Wang F (2014) Characterization of a novel GH2 family alpha-l-arabinofuranosidase from hyperthermophilic bacterium Thermotoga thermarum. Biotechnol Lett 36(6):1321–1328. doi:10.1007/s10529-014-1493-6

    Article  CAS  PubMed  Google Scholar 

  35. Sun D, Zhang H, Guo D, Sun A, Wang H (2013) Shotgun proteomic analysis of plasma from dairy cattle suffering from footrot: characterization of potential disease-associated factors. PLoS One 8(2):e55973. doi:10.1371/journal.pone.0055973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tu CJ, Dai J, Li SJ, Sheng QH, Deng WJ, Xia QC, Zeng R (2005) High-sensitivity analysis of human plasma proteome by immobilized isoelectric focusing fractionation coupled to mass spectrometry identification. J Proteome Res 4(4):1265–1273. doi:10.1021/pr0497529

    Article  CAS  PubMed  Google Scholar 

  37. Val-Cid C, Biarnes X, Faijes M, Planas A (2015) Structural-functional analysis reveals a specific domain organization in family GH20 hexosaminidases. PLoS One 10(5):e0128075. doi:10.1371/journal.pone.0128075

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang W, Zhang G, Zou J (2013) The interaction of polysaccharide from Auricularia polytricha with quantum dots and the protection of plasmid DNA from damage. Appl Biochem Biotechnol 169(8):2263–2272. doi:10.1007/s12010-013-0135-0

    Article  CAS  PubMed  Google Scholar 

  39. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. doi:10.1038/nmeth.1322

    Article  CAS  PubMed  Google Scholar 

  40. Wu J, Ji Z, Wang N, Chi F, Xu C, Zhou Z, Zhang J (2016) Identification of conidiogenesis-associated genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-mediated transformation. Curr Microbiol 73(6):802–810. doi:10.1007/s00284-016-1131-8

    Article  CAS  PubMed  Google Scholar 

  41. Wu NJ, Chiou FJ, Weng YM, Yu ZR, Wang BJ (2014) In vitro hypoglycemic effects of hot water extract from Auricularia polytricha (wood ear mushroom). Int J Food Sci Nutr 65(4):502–506. doi:10.3109/09637486.2014.886183

    Article  PubMed  Google Scholar 

  42. Yang X, Guo M, Wu Y, Wu Q, Zhang R (2014) Removal of emulsified oil from water by fruiting bodies of macro-fungus (Auricularia polytricha). PLoS One 9(4):e95162. doi:10.1371/journal.pone.0095162

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yap HY, Fung SY, Ng ST, Tan CS, Tan NH (2015) Shotgun proteomic analysis of tiger milk mushroom (Lignosus rhinocerotis) and the isolation of a cytotoxic fungal serine protease from its sclerotium. J Ethnopharmacol 174:437–451. doi:10.1016/j.jep.2015.08.042

    Article  CAS  PubMed  Google Scholar 

  44. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40(Web Server issue):W445–451. doi:10.1093/nar/gks479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu GJ, Yin YL, Yu WH, Liu W, Jin YX, Shrestha A, Yang Q, Ye XD, Sun H (2015) Proteome exploration to provide a resource for the investigation of Ganoderma lucidum. PLoS One 10(3):e0119439

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yu J, Sun R, Zhao Z, Wang Y (2014) Auricularia polytricha polysaccharides induce cell cycle arrest and apoptosis in human lung cancer A549 cells. Int J Biol Macromol 68:67–71. doi:10.1016/j.ijbiomac.2014.04.018

    Article  CAS  PubMed  Google Scholar 

  47. Yu L, Wang SF, Zhai QZ, Yao YQ, Jiang F, Lu YX (2015) Exceptional material requirement for reproduction in mouse oocytes. Genet Mol Res 14(4):14356–14365. doi:10.4238/2015.November.13.21

    Article  CAS  PubMed  Google Scholar 

  48. Yu M, Ma B, Luo X, Zheng L, Xu X, Yang Z (2008) Molecular diversity of Auricularia polytricha revealed by inter-simple sequence repeat and sequence-related amplified polymorphism markers. Curr Microbiol 56(3):240–245. doi:10.1007/s00284-007-9067-7

    Article  CAS  PubMed  Google Scholar 

  49. Zhang J, Li C, Tang X, Lu Q, Sa R, Zhang H (2015) Proteome changes in the small intestinal mucosa of broilers (Gallus gallus) induced by high concentrations of atmospheric ammonia. Proteome Sci 13:9

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang Z, Wang S, Huang J, Liu L, Lu M, Li M, Sui Y, Xu L, Yan R, Song X, Li X (2015) Proteomic analysis of Eimeria acervulina sporozoite proteins interaction with duodenal epithelial cells by shotgun LC-MS/MS. Mol Biochem Parasitol 202(2):29–33. doi:10.1016/j.molbiopara.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  51. Zhao S, Rong C, Liu Y, Xu F, Wang S, Duan C, Chen J, Wu X (2015) Extraction of a soluble polysaccharide from Auricularia polytricha and evaluation of its anti-hypercholesterolemic effect in rats. Carbohydr Polym 122:39–45. doi:10.1016/j.carbpol.2014.12.041

    Article  CAS  PubMed  Google Scholar 

  52. Zheng S, Huang H, Zhang R, Cao L (2014) Removal of Cr(VI) from aqueous solutions by fruiting bodies of the jelly fungus (Auricularia polytricha). Appl Microbiol Biotechnol 98(20):8729–8736. doi:10.1007/s00253-014-5862-9

    Article  CAS  PubMed  Google Scholar 

  53. Zhou J, Chen Y, Xin M, Luo Q, Gu J, Zhao M, Xu X, Lu X, Song G (2013) Structure analysis and antimutagenic activity of a novel salt-soluble polysaccharide from Auricularia polytricha. J Sci Food Agric 93(13):3225–3230. doi:10.1002/jsfa.6161

    Article  CAS  PubMed  Google Scholar 

  54. Zhou Y, Chen L, Fan X, Bian Y (2014) De novo assembly of Auricularia polytricha transcriptome using Illumina sequencing for gene discovery and SSR marker identification. PLoS One 9(3):e91740. doi:10.1371/journal.pone.0091740

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhao.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Additional information

Supplemental dataset

The combined protein database including NCBI Auriculariales sequences (14 October 2015, 47231 sequences) and putative proteins (translated from 33573 open reading frames (ORFs) of Auricularia polytricha transcriptome).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 153 kb). 1850 high-confidence proteins with two or more unique peptides

284_2017_1268_MOESM2_ESM.xlsx

Supplementary material 2 (XLSX 35 kb). Second level GO annotation in three categories of cellular component, molecular function and biological process

284_2017_1268_MOESM3_ESM.xlsx

Supplementary material 3 (XLSX 71 kb). Proteins from fruiting bodies of Auricularia polytricha and their KEGG pathways, in which proteins were assigned to 309 KEGG pathways

Supplementary material 4 (XLSX 21 kb). KEGG classification of fruiting-body proteins from Auricularia polytricha

Supplementary material 5 (XLSX 20 kb). Detailed information of 132 carbohydrate-active enzymes

Supplementary material 6 (XLSX 11 kb). Relative gene expression of selected proteins

Supplementary material 7 (XLSX 10 kb). Statistic information of proteins by KEGG classification

Supplementary material 8 (31,786 kb). Statistic information of proteins by KEGG classification

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, D., Wang, B., Li, X. et al. Proteomic Analysis Revealed the Fruiting-Body Protein Profile of Auricularia polytricha . Curr Microbiol 74, 943–951 (2017). https://doi.org/10.1007/s00284-017-1268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1268-0

Navigation