Skip to main content
Log in

Label-Free Quantitative Proteomic Profiling Identifies Potential Active Components to Exert Pharmacological Effects in the Fruit of Alpinia oxyphylla by Mass Spectrometry

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

An Erratum to this article was published on 06 August 2020

This article has been updated

Abstract

To explore the relationship between fruit developmental periods and the protein datasets of Alpinia oxyphylla, a label-free quantitative proteomic profiling analysis of the A. oxyphylla fruits sampled at the Earlystage, Metaphase and Advanced stage was carried out using the liquid chromatography combined with tandem mass spectrometry. A total of 19,219 peptide fragments and 4946 quantitative proteins were obtained. Annotation and enrichment analysis of these peptides and proteins were performed using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases with bioinformatics software. The results showed that the differentially expressed proteins were mainly involved in metabolic and cellular processes, cellular component organization or biogenesis and response to the stimulus. Three significantly enriched metabolic pathways were non-alcoholic fatty liver disease, vibrio cholera infection and valine, leucine and isoleucine degradation. The significantly enriched proteins were NADH dehydrogenase, putative vacuolar proton translocation ATPase and putative acyltransferase component. The proteomic profiles of the fruit samples from the Advanced and the Metaphase stages differed little, while the difference in proteomic components between the Earlystage and the Advanced groups was significant. This study should lay the theoretical foundation for the effective utilization of A. oxyphylla germplasm resource in the treatment of human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 06 August 2020

    The original article can be found online.

References

  • An LJ, Guan S, Shi GF, Bao YM, Duan YL, Jiang B (2006) Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells. Food Chem Toxicol 44(3):436–443

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(5):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batelli S, Peverelli E, Rodilossi S, Forloni G, Albani D (2011) Macroautophagy and the proteasome are differently involved in the degradation of alpha-synuclein wild type and mutated A30P in an in vitro inducible model (PC12/TetOn). Neuroscience 195:128–137

    Article  CAS  PubMed  Google Scholar 

  • Bian QY, Wang SY, Xu LJ, Chan CO, Mok DKW, Chen SB (2013) Two new antioxidant diarylheptanoids from the fruits of Alpinia oxyphylla. J Asian Nat Prod Res 15(10):1094–1099

    Article  CAS  PubMed  Google Scholar 

  • Calder PC (2006) Branched-chain amino acids and immunity. J Nutr 136(1):288S–293S

    Article  CAS  PubMed  Google Scholar 

  • Chang YM, Velmurugan BK, Kuo WW, Chen YS, Ho TJ, Tsai CT, Ye CX, Tsai CH, Tsai FJ, Huang CY (2013) Inhibitory effect of alpinate Oxyphyllae fructus extracts on Ang II-induced cardiac pathological remodeling-related pathways in H9c2 cardiomyoblast cells. Biomed 3:148-152

    Article  Google Scholar 

  • Chang YM, Chang HH, Tsai CC, Lin HJ, Ho TJ, Ye CX, Chiu PL, Chen YS, Chen RJ, Huang CY, Lin CC (2017) Alpinia oxyphylla Miq. Fruit extract activates IGFR-PI3K/Akt signaling to induce Schwann cell proliferation and sciatic nerve regeneration. BMC Complem Altern M 17(1):84

    Article  Google Scholar 

  • Chapman MA (2014) Interactions between cell adhesion and the synaptic vesicle cycle in Parkinson’s disease. Med Hypotheses 83(2):203–207

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Li HL, Tan YF, Guan WW, Zhang JQ, Li YH, Zhao YS, Qin ZM (2014) Different accumulation profiles of multiple components between pericarp and seed of Alpinia oxyphylla capsular fruit as determined by UFLC-MS/MS. Molecules 19:4510–4523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b. range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805

    Article  CAS  PubMed  Google Scholar 

  • Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13(9):2513–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Lamb CJ, Masoud S, Sewalt VJH, Paiva NL (1996) Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses-a review. Gene 179(1):61–71

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang LJ (2002) The phenylpropanoid pathway and plant defense-a genomics perspective. Mol Plant Pathol 3(5):371–390

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT, McLean P, Unni VK (2011) Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein. J Neurosci 31:14508–14520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito G, Clara FA, Verstreken P (2011) Synaptic vesicle trafficking and Parkinson’s disease. Dev Neurobiol 72(1):134–144

    Article  CAS  Google Scholar 

  • Fang JY, Leu YL, Hwang TL, Cheng HC, Hung CF (2003) Development of sesquiterpenes from Alpinia oxyphylla as novel skin permeation enhancers. Eur J Pharm Sci 19:253–262

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Yuan L, Tang T, Hou J, Pan K, Wei N (2019) The complete chloroplast genome sequence of Alpinia oxyphylla Miq. and comparison analysis within the Zingiberaceae family. PLoS ONE 14(6):e0218817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He ZH, Ge W, Yue GGL, Lau CBS, He MF, But PPH (2010) Anti-angiogenic effects of the fruit of Alpinia oxyphylla. J Ethnopharmaco 132:443–449

    Article  Google Scholar 

  • Hou L, Ding G, Guo BL, Huang WH, Zhang XJ, Sun ZY, Shi XF (2015) New sesquiterpenoids and a diterpenoid from Alpinia oxyphylla. Molecules 20:1551–1559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang B, Wang WJ, Li MP, Huang XJ, Huang F, Gao H, Sun PH, He MF, Jiang ZJ, Zhang XQ, Ye WC (2013) New eudesmane sesquiterpenes from Alpinia oxyphylla and determination of their inhibitory effects on microglia. Bioorg Med Chem Lett 23(13):3879–3883

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of largescale molecular data sets. Nucleic Acids Res 40(D1):D109–D114

    Article  CAS  PubMed  Google Scholar 

  • Khodaei H, Alizadeh M (2017) Inhibition of IL-4 but not IFN-γ production by splenocytes of mice immunized with ovalbumin after oral administration of 5-hydroxymethylfurfural. Food Agr Immuno 28(1):27–34

    Article  CAS  Google Scholar 

  • Kindt E, Halvorsen S (1980) The need of essential amino acids in children: an evaluation based on the intake of phenylalanine, tyrosine, leucine, isoleucine, and valine in children with phenylketonuria, tyrosine amino transferase defect, and maple syrup urine disease. Am J Clin Nutr 33(2):279–286

    Article  CAS  PubMed  Google Scholar 

  • Koo BS, Lee WC, Chang YC, Kim CH (2004) Protective effects of Alpinae oxyphyllae fructus (Alpinia oxyphylla MIQ) water-extracts on neurons from ischemic damage and neuronal cell toxicity. Phytotherapy Res 18(2):142–148

    Article  Google Scholar 

  • Kubo M, Matsuda H, Suo T, Yamanaka J, Sakanaka M, Yoshimura M (1995) Study on Alpiniae Fructus. I. Pharmacological evidence of efficacy of Alpiniae Fructus on ancient herbal literature. Yakugaku Zasshi 115:852–862

    Article  CAS  PubMed  Google Scholar 

  • Lee E, Park KK, Lee JM, Chun KS, Kang JY, Lee SS, Surh YJ (1998) Suppression of mouse skin tumor promotion and induction of apoptosis in HL-60 cells by Alpinia oxyphylla Miquel (Zingiberaceae). Carcinogenesis 19(8):1377–1381

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Khoshaghideh F, Patel S, Lee SJ (2004) Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci 24:1888–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XZ, Zhang SN, Liu SM, Lu F (2013a) Recent advances in herbal medicines treating Parkinson’s disease. Fitoterapia 84:273–285

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Chen F, Wang JF, Wang Y, Zhang JQ, Guo T (2013b) Analysis of nine compounds from Alpinia oxyphylla fruit at different harvest time using UFLC-MS/MS and an extraction method optimized by orthogonal design. Chem Cent J 7:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li GH, Zhang ZJ, Quan Q, Jiang RW, Szeto SSW, Yuan S, Wong WT, Lam HHC, Lee SMY, Chu IK (2016a) Discovery, synthesis, and functional characterization of a novel neuroprotective natural product from the fruit of Alpinia oxyphylla for use in Parkinson’s disease through LC/MS-based multivariate data analysis-guided fractionation. J Proteome Res 15(8):2595–2606

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Tan YF, Wei N, Zhang JQ (2016b) Diuretic and anti-diuretic bioactivity of the seed and shell extracts of Alpinia oxyphylla fruit. Afr J Tradit Complement Altern Med 13(5):25–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin RJ, Yen CM, Chou TH, Chiang FY, Wang GH, Tseng YP, Wang L, Huang TW, Wang HC, Chan LP, Ding HY, Liang CH (2013) Antioxidant, anti-adipocyte differentiation, antitumor activity and anthelmintic activities against Anisakis simplex and Hymenolepis nana of yakuchinone A from Alpinia oxyphylla. BMC Complem Altern M 13:237

    Article  Google Scholar 

  • Liu AJ, Zhao X, Li H, Liu Z, Liu B, Mao X, Guo L, Bi K, Jia Y (2014) 5-hydroxymethylfurfural, an antioxidant agent from Alpinia oxyphylla Miq. Improves cognitive impairment in Aβ1-42 mouse model of Alzheimer′s disease. Int Immunopharmacol 23:719–725

    Article  CAS  PubMed  Google Scholar 

  • Lv XQ, Luo JG, Wang XB, Wang JS, Luo J, Kong LY (2011) Four new sesquiterpenoids from the fruits of Alpinia oxyphylla. Chem Pharm Bull 59(3):402–406

    Article  CAS  Google Scholar 

  • Miao Q, Kong WJ, Zhao XS, Yang SH, Yang MH (2015) GC-FID coupled with chemometrics for quantitative and chemical fingerprinting analysis of Alpinia oxyphylla oil. J Pharmaceut Biomed 102:436–442

    Article  CAS  Google Scholar 

  • Mok CC, Lau CS (2003) Pathogenesis of systemic lupus erythematosus. J Clin Pathol 56:481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra KC, Hay N (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39(8):347–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pharmacopoeia Committee (2005) Pharmacopoeia of the People’s Republic of China, vol I. Chemical Industry Press, Beijing, pp 104, 165, 202, 204

  • Sang SG, Xiao M, Ni YL, Feng GZ, Xiong XH, Luo ZY, Du GK, Xie YQ (2017) Alpinia oxyphylla Miq. extract changes microRNA expression profiles in db-/db-mouse lives. Int J Clin Exp Med 10(10):14447–14457

    Google Scholar 

  • Shi SH, Zhao X, Liu AJ, Liu B, Li H, Wu B, Bi KS, Jia Y (2015) Protective effect of n-butanol extract from Alpinia oxyphylla on learning and memory impairments. Physiol Behav 139:13–20

    Article  CAS  PubMed  Google Scholar 

  • Song WJ, Li YH, Wang JG, Li ZY, Zhang JQ (2014) Characterization of nucleobases and nucleosides in the fruit of Alpinia oxyphylla collected from different cultivation regions. Drug Test Anal 6(3):239–245

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Kong XZ, Zuo LH, Kang J, Hou L, Zhang XJ (2016) Rapid extraction and determination of 25 bioactive constituents in Alpinia oxyphylla using microwave extraction with ultra-high performance liquid chromatography with tandem mass spectrometry. J Sep Sci 39(3):603–610

    Article  CAS  PubMed  Google Scholar 

  • Taheri P, Tarighi S (2010) Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J Physiol 167(3):201–208

    CAS  Google Scholar 

  • Tewari A, Plant AK, Mengi N, Patra NK (1999) A review on Alpinia species: chemical, biocidal and pharmacological aspects. J Med Aroma Plant Sci 21:1155–1168

    CAS  Google Scholar 

  • Tsai CT, Chang YM, Lin SL, Chen YS, Yeh YL, Padma VV, Tsai CC, Chen RJ, Ho JJ, Huang CY (2016) Alpinate Oxyphyllae fructus inhibits IGFII-related signaling pathway to attenuate Ang II-induced pathological hypertrophy in H9c2 cardiomyoblasts. J Med Food 19(3):300–309

    Article  CAS  PubMed  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Liu XJ, Wen MF, Pan K, Zou ML, Lu C, Liu SS, Wang WQ (2012) Analysis of the genetic diversity of natural populations of Alpinia oxyphylla Miquel using inter-simple sequence repeat markers. Crop Sci 52:1767–1775

    Article  CAS  Google Scholar 

  • Wang CZ, Yuan HH, Bao XL, Lan MB (2013) In vitro antioxidant and cytotoxic properties of ethanol extract of Alpinia oxyphylla fruits. Pharm Biol 51(11):1419–1425

    Article  PubMed  Google Scholar 

  • Wang S, Zhao Y, Zhang JQ, Huang XX, Wang YF, Xu XT, Zheng B, Zhou X, Tian HJ, Liu L, Mei QB (2015) Antidiarrheal effect of Alpinia oxyphylla Miq. (Zingiberaceae) in experimental mice and its possible mechanism of action. J Ethnopharmacol 168:182–190

    Article  PubMed  Google Scholar 

  • Wang MS, Bi WC, Fan KY, Li TD, Yan TX, Xiao F, He BS, Bi KS, Jia Y (2018) Ameliorating effect of Alpinia oxyphylla-Schisandra chinensis herb pair on cognitive impairment in a mouse model of Alzheimer’s disease. Biomed Pharmacother 97(1):128–135

    CAS  PubMed  Google Scholar 

  • Weiss H, Friedrich T, Hofhaus G, Preis D (1991) The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. In: Christen P, Hofmann E (eds) EJB reviews 1991. Springer, Berlin, Heidelberg

    Google Scholar 

  • Wiśniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Xiao M, Ni Y, Jiang S, Feng G, Sang S, Du G (2018) Alpinia oxyphylla Miq. extract prevents diabetes in mice by modulating gut microbiota. J Diabetes Res 2018:1–10

    Google Scholar 

  • Xu JJ, Ji CJ, Zhang YM, Su J, Li Y, Tan NH (2012a) Inhibitory activity of eudesmane sesquiterpenes from Alpinia oxyphylla on production of nitric oxide. Bioorg Med Chem Lett 22(4):1660–1663

    Article  CAS  PubMed  Google Scholar 

  • Xu JZ, Wang YF, Tan XR, Jing HJ (2012b) MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis. Autophagy 8(6):873–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Wang F, Guo JJ, Xu CS, Cao YZ, Fang ZL, Wang QW (2020) Pharmacological mechanisms underlying the neuroprotective effects of Alpinia oxyphylla Miq. on Alzheimer’s disease. Int J Mol Sci 21:2071

    Article  PubMed Central  CAS  Google Scholar 

  • Yan TX, Wu B, Liao ZZ, Liu B, Zhan X, Bi KS, Jia Y (2016) Brain-derived neurotrophic factor signaling mediates the antidepressant-like effect of the total flavonoids of Alpiniae oxyphyllae Fructus in chronic unpredictable mild stress mice. Phytother Res 30:1493–1502

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  CAS  PubMed  Google Scholar 

  • Yu XY, An LJ, Wang YQ, Zhao H, Gao CZ (2003) Neuroprotective effect of Alpinia oxyphylla Miq. fruits against glutamate-induced apoptosis in cortical neurons. Toxicol Lett 14:205–212

    Article  CAS  Google Scholar 

  • Zabala G, Zou J, Tuteja J, Gonzalez DO, Clough SJ, Vodkin LO (2006) Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biol 6(1):26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Cheang LCV, Wang M, Li GH, Chu IK, Lin ZX, Lee SMY (2012) Ethanolic extract of fructus Alpinia oxyphylla protects against 6-hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Cell Mol Neurobiol 32:27–40

    Article  PubMed  Google Scholar 

  • Zhang JQ, Wang S, Li YH, Xu P, Chen F, Tan YF, Duan JN (2013) Anti-diarrheal constituents of Alpinia oxyphylla. Fitoterapia 89:149–156

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Cui C, Chen CQ, Hu XL, Liu YH, Fan YH, Meng WH, Zhao QC (2015) Anti-proliferative and pro-apoptotic activities of Alpinia oxyphylla on HepG2 cells through ROS-mediated signaling pathway. J Ethnopharmacol 169:99–108

    Article  PubMed  Google Scholar 

  • Zhang SH, Zeng XF, Ren M, Mao XB, Qiao SY (2017) Novel metabolic and physiological functions of branched chain amino acids: a review. J Animal Sci Biotechnol 8:10

    Article  CAS  Google Scholar 

  • Zhang Q, Zheng YL, Hu XJ, Hu XL, Lv WW, Lv D, Chen JJ, Wu ML, Song QC, Shentu JZ (2018) Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Alpinia oxyphylla Miquel: a review. J Ethnopharmaco 224:149–168

    Article  CAS  Google Scholar 

  • Zhao XS, Wei JH, Shu XY, Kong WJ, Yang MH (2016) Multi-elements determination in medical and edible Alpinia oxyphylla and Morinda officinalis and their decoctions by ICP-MS. Chemosphere 164:430–435

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Su X, Liu C, Jia Y (2018) Simultaneous determination of chrysin and tectochrysin from Alpinia oxyphylla fruits by UPLC-MS/MS and its application to a comparative pharmacokinetic study in normal and dementia rats. Molecules 23:1702

    Article  PubMed Central  CAS  Google Scholar 

  • Zhu X, Liu X, Cheng Z, Zhu J, Xu L, Wang F, Qi W, Yan J, Liu N, Sun Z, Liu H, Peng X, Hao Y, Zheng N, Wu Q (2016) Quantitative analysis of global proteome and lysine acetylome reveal the differential impacts of VPA and SAHA on HL60 cells. Sci Rep 6:19926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 81560611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingmiao Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Yuan, L., Fu, J. et al. Label-Free Quantitative Proteomic Profiling Identifies Potential Active Components to Exert Pharmacological Effects in the Fruit of Alpinia oxyphylla by Mass Spectrometry. J. Plant Biol. 63, 297–310 (2020). https://doi.org/10.1007/s12374-020-09251-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09251-9

Keywords

Navigation