Skip to main content
Log in

Role of CgHOG1 in Stress Responses and Glycerol Overproduction of Candida glycerinogenes

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Candida glycerinogenes, the glycerol producer with excellent multi-stress tolerances, is considered to be a potential biotechnological host used in the production of glycerol and its derivatives under extreme fermentation conditions. In this study, to evaluate the multiple roles of mitogen-activated protein kinase CgHOG1, we constructed a gene disruption system in the diploid C. glycerinogenes to obtain CgHOG1 null mutant. Pseudohyphae generation of the CgHOG1 mutant under non-inducing condition indicated a repressor role in morphological transitions. Disruption of CgHOG1 resulted in increased sensitivities to osmotic, acetic acid, and oxidative stress but not involved in thermotolerance. In the CgHOG1 mutant, NaCl shock failed to stimulate the accumulation of intracellular glycerol and was fatal. In addition, the CgHOG1 mutant displayed a significant prolonged growth lag phase in YPD medium with no decrease in glycerol production, whereas the mutant cannot grow under hyperosmotic condition with no detectable glycerol in broth. These results suggested that CgHOG1 plays important roles in morphogenesis and multi-stress tolerance. The growth and glycerol overproduction under osmotic stress are heavily dependent on CgHOG1 kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alepuz PM, Jovanovic A, Reiser V, Ammerer G (2001) Stress-induced map kinase Hog1 is part of transcription activation complexes. Mol Cell 7(4):767–777

    Article  CAS  PubMed  Google Scholar 

  2. Bouwman J, Kiewiet J, Lindenbergh A, van Eunen K, Siderius M, Bakker BM (2011) Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast. Yeast 28(1):43–53

    Article  CAS  PubMed  Google Scholar 

  3. Cheetham J, MacCallum DM, Doris KS, da Silva Dantas A, Scorfield S, Odds F, Smith DA, Quinn J (2011) MAPKKK-independent regulation of the Hog1 stress-activated protein kinase in Candida albicans. J Biol Chem 286(49):42002–42016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen X, Fang H, Rao Z, Shen W, Zhuge B, Wang Z, Zhuge J (2008) An efficient genetic transformation method for glycerol producer Candida glycerinogenes. Microbiol Res 163(5):531–537

    Article  CAS  PubMed  Google Scholar 

  5. Chen X, Fang H, Rao Z, Shen W, Zhuge B, Wang Z, Zhuge J (2008) Cloning and characterization of a NAD+ -dependent glycerol-3-phosphate dehydrogenase gene from Candida glycerinogenes, an industrial glycerol producer. FEMS Yeast Res 8(5):725–734

    Article  CAS  PubMed  Google Scholar 

  6. Chen XZ, Fang HY, Rao ZM, Shen W, Zhuge B, Wang ZX, Zhuge J (2009) Comparative characterization of genes encoding glycerol 3-phosphate dehydrogenase from Candida glycerinogenes and Saccharomyces cerevisiae. Prog Biochem Biophys 36(2):198–205

    Article  CAS  Google Scholar 

  7. Eisman B, Alonso-Monge R, Roman E, Arana D, Nombela C, Pla J (2006) The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot Cell 5(2):347–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Enjalbert B, Smith DA, Cornell MJ, Alam I, Nicholls S, Brown AJ, Quinn J (2006) Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell 17(2):1018–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583(24):4025–4029

    Article  CAS  PubMed  Google Scholar 

  10. Hohmann S (2015) An integrated view on a eukaryotic osmoregulation system. Curr Genet 61(3):373–382

    Article  CAS  PubMed  Google Scholar 

  11. Ikner A, Shiozaki K (2005) Yeast signaling pathways in the oxidative stress response. Mutat Res 569(1):13–27

    Article  CAS  PubMed  Google Scholar 

  12. Ji H, Lu X, Wang C, Zong H, Fang H, Sun J, Zhuge J, Zhuge B (2014) Identification of a novel HOG1 homologue from an industrial glycerol producer Candida glycerinogenes. Curr Microbiol 69(6):909–914

    Article  CAS  PubMed  Google Scholar 

  13. Kayingo G, Wong B (2005) The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans. Microbiology 151(9):2987–2999

    Article  CAS  PubMed  Google Scholar 

  14. Kejzar A, Cibic M, Grotli M, Plemenitas A, Lenassi M (2015) The unique characteristics of HOG pathway MAPKs in the extremely halotolerant Hortaea werneckii. FEMS Microbiol Lett 362(8):fnv046

    Article  PubMed  Google Scholar 

  15. Ko BS, Kim J, Kim JH (2006) Production of xylitol from D-xylose by Da xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Appl Environ Microbiol 72(6):4207–4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu X, Wang Y, Zong H, Ji H, Zhuge B, Dong Z (2016) Bioconversion of l-phenylalanine to 2-phenylethanol by the novel stress-tolerant yeast Candida glycerinogenes WL2002-5. Bioengineering. doi:10.1080/21655979.2016.1171437

    Google Scholar 

  17. Mollapour M, Piper PW (2006) Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res 6(8):1274–1280

    Article  CAS  PubMed  Google Scholar 

  18. Oliveira R, Lages F, Silva-Graça M, Lucas C (2003) Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: artefacts and re-definitions. BBA-Biomembranes 1613(1–2):57–71

    Article  CAS  PubMed  Google Scholar 

  19. Qian J, Qin X, Yin Q, Chu J, Wang Y (2011) Cloning and characterization of Kluyveromyces marxianus Hog1 gene. Biotechnol Lett 33(3):571–575

    Article  CAS  PubMed  Google Scholar 

  20. Remize F, Cambon B, Bamavon L, Dequin S (2003) Glycerol formation during wine fermentation is mainly linked to Gpdlp and is only partially controlled by the the HOG pathway. Yeast 20:1243–1253

    Article  CAS  PubMed  Google Scholar 

  21. Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192(2):289–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song B, Zhuge B, Fang H, Zhuge J (2011) Analysis of the chromosome ploidy of Candida glycerinogenes. Wei Sheng Wu Xue Bao 51(3):326–331

    CAS  PubMed  Google Scholar 

  23. Tulha J, Lima A, Lucas C, Ferreira C (2010) Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given. Microb Cell Fact 9:82–89

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang C, Zong H, Zhuge B, Lu XY, Fang HY, Zhuge J (2015) Integrative expression vectors for overexpression of xylitol dehydrogenase (XYL2) in osmotolerant yeast, Candida glycerinogenes WL2002-5. J Ind Microbiol Biot 42(1):113–124

    Article  Google Scholar 

  25. Zhang C, Zong H, Zhuge B, Lu X, Fang H, Zhuge J (2015) Production of Xylitol from D-xylose by overexpression of xylose reductase in osmotolerant yeast Candida glycerinogenes WL2002-5. Appl Biochem Biotechnol 176(5):1511–1527

    Article  CAS  PubMed  Google Scholar 

  26. Zhuge J, Fang HY, Wang ZX, Chen DZ, Jin HR, Gu HL (2001) Glycerol production by a novel osmotolerant yeast Candida glycerinogenes. Appl Microbiol Biotechnol 55(6):686–692

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by China National “863” High-Tech Program (No. 2012AA021201) and supported by the National Natural Science Foundation of China (Nos. 31570052, 31601456), the Natural Science Foundation of Jiangsu Province (Nos. BK20140134, BK20140138), the Six Talent Peaks Project in Jiangsu Province (No. 2014-XCL-017), and the Fundamental Research Funds for the Central Universities (JUSRP11431). We thank Dr. Jiangye Chen (Chinese Academy of Sciences) for plasmid pCUB6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhuge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, H., Zhuge, B., Zong, H. et al. Role of CgHOG1 in Stress Responses and Glycerol Overproduction of Candida glycerinogenes . Curr Microbiol 73, 827–833 (2016). https://doi.org/10.1007/s00284-016-1132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1132-7

Keywords

Navigation