Skip to main content
Log in

Secretome Analysis of Metarhizium anisopliae Under Submerged Conditions Using Bombyx mori Chrysalis to Induce Expression of Virulence-Related Proteins

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The entomopathogenic fungus Metarhizium anisopliae is used to control insect pests. This species is specialized for the secretion of an enzymatic complex consisting of proteases, lipases, and chitinases related to pathogenicity and virulence. In this context, the secretomes of strains IBCB 167 and IBCB 384 of M. anisopliae var. anisopliae, grown under submerged fermentation in the presence of chrysalis as an inducer, were analyzed. Analysis of two-dimensional gels showed qualitative and quantitative differences between secreted proteins in both isolates. Around 102 protein spots were analyzed, and 76 % of the corresponding proteins identified by mass spectrometry were grouped into different classes (hydrolases, oxidases, reductases, isomerases, kinases, WSC domains, and hypothetical proteins). Thirty-three per cent of all the proteins analyzed were found to be common in both strains. Several virulence-related proteins were identified as proteases and mannosidases. Endo-N-acetyl-β-d-glucosaminidase expression was observed to be 10.14-fold higher for strain IBCB 384 than for strain IBCB 167, which may be an important contributor to the high virulence of IBCB 384 in Diatraea ssaccharalis. These results are important for elucidation of the host-pathogen relationship and the differences in virulence observed between the two strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alves SB (1998) Patologia e controle microbiano, vantagens e desvantagens. Controle Microbiano de Insetos, 2nd edn. FEALQ, Piracicaba, p 1163

    Google Scholar 

  2. Bhadauria V, Zhao W-S, Wang L-X, Zhang Y et al (2007) Advances in fungal proteomics. Microbiol Res 162:193–200

    Article  PubMed  CAS  Google Scholar 

  3. Baratto CM, Dutra V, Boldo JT, Leiria LB et al (2006) Isolation, characterization and transcriptional analysis of the chitinase chi2 gene (DQ011663) from the biocontrol fungus Metarhizium anisopliae var. anisopliae. Curr Microbiol 53(33):21–217

    Google Scholar 

  4. Barros BHR, Silva SH, Marques ER, Rosa JC et al (2010) A proteomic approach to identifying proteins differentially expressed in conidia and mycelium of the entomopathogenic fungus Metarhizium acridum. Fungal Biol 14:572–579

    Article  CAS  Google Scholar 

  5. Bendtsen JD, Jensen LJ, Blom N, von Heijne G et al (2004) Feature based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17(4):349–356

    Article  PubMed  CAS  Google Scholar 

  6. Bogo MR, Rota CA, JrH Pinto, Campos M et al (1998) A chitinase encoding gene (chit1 gene) from the entomopathogen Metarhizium anisopliae, isolation and characterization of genomic and full length cDNA. Curr Microbiol 37:1–6

    Article  Google Scholar 

  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  8. Braga GUL, Messias CL, Vencovsky R (1998) Estimates of genetic parameters related to chitinase production by the entomopathogenic fungus Metarhizium anisopliae. Genet Mol Biol 21(2):171–177

    Article  CAS  Google Scholar 

  9. Gao K, Jin K, Ying SH, Zhang Y et al (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and Metarhzium acridum. PLoS Genet 7(1):e1001264. doi:10.1371/journal.pgen.1001264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gorg A, Postel W, Gubther S (1988) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9:531–546

    Article  PubMed  CAS  Google Scholar 

  11. Jiang L, He L, Fountoulakis M (2004) Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chrom A 1023:317–320

    Article  CAS  Google Scholar 

  12. Kang SC, Park S, Lee DG (1999) Purification and characterization of a novel chitinase from the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 73:276–281

    Article  PubMed  CAS  Google Scholar 

  13. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 222:680–685

    Article  Google Scholar 

  14. Lubeck I, Arruda W, Souza BK, Stanisçuaski F et al (2008) Evaluation of Metarhizium anisopliae strains as potential biocontrol agents of the tick Rhipicephalus (Boophilus) microplus and the cotton stainer Dysderceus peruvianus. Fungal Ecol 1:78–88

    Article  Google Scholar 

  15. Manalil NS, Te’O VSJ, Braithwaite K, Brumbley S et al (2009) A proteomic view into infection of greyback canegrubs (Dermolepida albohirtum) by Metarhizium anisopliae. Curr Genet 55:571–581

    Article  PubMed  CAS  Google Scholar 

  16. Mochi DA, Monteiro AC, De Bortoli SA, Dória H et al (2006) Pathogenicity of Metarhizium anisopliae for Ceratitis capitata (Wied) (Diptera, Tephritidae) in soil with different pesticides. Neotrop Entomol 35(3):382–389

    Article  PubMed  CAS  Google Scholar 

  17. Monteiro VN, Silva RN, Steindorff AS, Costa FT et al (2010) New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Curr Microbiol 61(4):298–305

    Article  PubMed  CAS  Google Scholar 

  18. Murad AM, Noronha EF, Miller RNG, Costa FT et al (2008) Proteomic analysis of Metarhizium anisopliae secretion in the presence of the insect pest Callosobruchus maculates. Microbiology 154:3766–3774

    Article  PubMed  CAS  Google Scholar 

  19. Nahar P, Ghormade V, Deshpande MV (2004) The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae, possible edge to entomopathogenic fungi in the biological control of insect pests. J Invert Pathol 85:80–88

    Article  CAS  Google Scholar 

  20. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  PubMed  CAS  Google Scholar 

  21. O’Farrell PH (1975) High-resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  PubMed Central  Google Scholar 

  22. Oh YT, Ahn CS, Kim JG, Ro HS et al (2010) Proteomic analysis of early phase of conidia germination in Aspergillus nidulans. Fungal Genet Biol 47:246–253

    Article  PubMed  CAS  Google Scholar 

  23. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  PubMed  CAS  Google Scholar 

  24. Pinto AS, Barreto CC, Vainstein MH, Schrank A et al (1997) Purification and characterization of an extracellular chitinase from the entomopathogen Metarhizium anisopliae. Can J Microbiol 43(4):322–327

    Article  CAS  Google Scholar 

  25. Quesada-Moraga E, Vey A (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108:441–452

    Article  PubMed  CAS  Google Scholar 

  26. Santi L, Da Silva WOB, Pinto AFM, Schrank A et al (2009) Differential immunoproteomics enables identification of Metarhizium anisopliae proteins related to Rhipicephalus microplus infection. Res Microbiol 160:824–828

    Article  PubMed  CAS  Google Scholar 

  27. Schrank A, Vainstein MH (2010) Metarhizium anisopliae enzymes and toxins. Toxicon 56:1267–1274

    Article  PubMed  CAS  Google Scholar 

  28. Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423

    Article  PubMed  CAS  Google Scholar 

  29. Small CLN, Bidochka MJ (2005) Up-regulation of Pr1, a subtilisin-like protease, during conidiation in the insect pathogen Metarhizium anisopliae. Mycol Res 109:307–313

    Article  PubMed  CAS  Google Scholar 

  30. Sree KS, Padmaja JAV (2008) Destruxin from Metarhizium anisopliae induces oxidative stress effecting larval mortality of the poyphagous pest Spodoptera litura. J Appl Entomol 132:68–78

    Article  CAS  Google Scholar 

  31. Leger RS, Durrands PK, Cooper RM, Charnley AK (1988) Regulation of production of proteolytic enzymes by entomopathogenic fungus Metarhizium anisopliae. Arch Microbiol 150:413–416

    Article  Google Scholar 

  32. Leger RS, Nelson JO, Screen SE (1999) The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity. Microbiology 145:2691–2699

    Article  Google Scholar 

  33. Zappelini LO, Almeida JEM, Batista Filho A, Giometti FHC (2010) Seleção de isolados do fungo entomopatogênico Metarhizium anisopliae (metsch.) sorok. visando o controle da broca da cana-de-açúcar Diatraea saccharalis (fabr., 1794). Arq Inst Biol 77(1):75–82

    Google Scholar 

Download references

Acknowledgments

We thank Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP – Process No. 2011/50880-1) and CAPES (Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior) for financial support, and Maurício de Oliveira for technical assistance. This manuscript is part of the CBR Ph.D. thesis presented to the Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto -USP, São Paulo, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Henrique Souza Guimarães.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rustiguel, C.B., Rosa, J.C., Jorge, J.A. et al. Secretome Analysis of Metarhizium anisopliae Under Submerged Conditions Using Bombyx mori Chrysalis to Induce Expression of Virulence-Related Proteins. Curr Microbiol 72, 220–227 (2016). https://doi.org/10.1007/s00284-015-0943-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0943-2

Keywords

Navigation