Skip to main content
Log in

Effects of 20 Standard Amino Acids on the Growth, Total Fatty Acids Production, and γ-Linolenic Acid Yield in Mucor circinelloides

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Twenty standard amino acids were examined as single nitrogen source on the growth, total fatty acids production, and yield of γ-linolenic acid (GLA) in Mucor circinelloides. Of the amino acids, tyrosine gave the highest biomass and lipid accumulation and thus resulted in a high GLA yield with respective values of 17.8 g/L, 23 % (w/w, dry cell weight, DCW), and 0.81 g/L, which were 36, 25, and 72 % higher than when the fungus was grown with ammonium tartrate. To find out the potential mechanism underlying the increased lipid accumulation of M. circinelloides when grown on tyrosine, the activity of lipogenic enzymes of the fungus during lipid accumulation phase was measured. The enzyme activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase were up-regulated, while NADP-isocitrate dehydrogenase was down-regulated by tyrosine during the lipid accumulation phase of the fungus which suggested that these enzymes may be involved in the increased lipid biosynthesis by tyrosine in this fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aggelis G (1996) Two alternative pathways for substrate assimilation by Mucor circinelloides. Folia Microbiol 41(3):254–256

    Article  CAS  Google Scholar 

  2. Aggelis G, Pina M, Ratomahenina R, Arnaud A, Graille J, Galzy P, Martin Privat P, Perraud J (1987) Production of oils rich in gamma linolenic acid through various strains of phycomycetes. Oleagineux 42:379–386

    CAS  Google Scholar 

  3. Aggelis G, Ratomahenina R, Arnaud A, Galzy P, Martin Privat P, Perraud J, Pina M, Graille J (1988) Study of the effect of growing conditions on the gamma linolenic content of Mucor strains. Oleagineux 43:311

    CAS  Google Scholar 

  4. Aggelis G, Sourdis J (1997) Prediction of lipid accumulation-degradation in oleaginous microorganisms growing on vegetable oils. Antonie Van Leeuwenhoek 72(2):159–165

    Article  PubMed  CAS  Google Scholar 

  5. Akoh CC (2005) Handbook of functional lipids. CRC Press, Boca Raton

    Book  Google Scholar 

  6. Barre DE (2001) Potential of evening primrose, borage, black currant, and fungal oils in human health. Ann Nutr Metab 45(2):47–57

    Article  PubMed  CAS  Google Scholar 

  7. Boulton CA, Ratledge C (1981) Correlation of lipid accumulation in yeasts with possession of ATP: citrate lyase. J Gen Microbiol 127(1):169–176

    CAS  Google Scholar 

  8. Certik M, Balteszov L, Sajbidor J (1997) Lipid formation and γ-linolenic acid production by Mucorales fungi grown on sunflower oil. Lett Appl Microbiol 25(2):101–105

    Article  CAS  Google Scholar 

  9. Certik M, Megova J, Horenitzky R (1999) Effect of nitrogen sources on the activities of lipogenic enzymes in oleaginous fungus Cunninghamella echinulata. J Gen Appl Microbiol 45(6):289–293

    Article  PubMed  CAS  Google Scholar 

  10. Chen H-C, Liu T-M (1997) Inoculum effects on the production of γ-linolenic acid by the shake culture of Cunninghamella echinulata CCRC 31840. Enzyme Microb Technol 21(2):137–142

    Article  CAS  Google Scholar 

  11. Fakas S, Galiotou-Panayotou M, Papanikolaou S, Komaitis M, Aggelis G (2007) Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzyme Microb Technol 40(5):1321–1327

    Article  CAS  Google Scholar 

  12. Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33(4):573–580

    Article  CAS  Google Scholar 

  13. Folch J, Lees M, Sloane-Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    PubMed  CAS  Google Scholar 

  14. Gema H, Kavadia A, Dimou D, Tsagou V, Komaitis M, Aggelis G (2002) Production of γ-linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peel. Appl Microbiol Biotechnol 58(3):303–307

    Article  PubMed  CAS  Google Scholar 

  15. Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, Andre B (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27(8):3065–3086

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Hansson L, Dostálek M (1988) Effect of culture conditions on mycelial growth and production of γ-linolenic acid by the fungus Mortierella ramanniana. Appl Microbiol Biotechnol 28(3):240–246

    Article  CAS  Google Scholar 

  17. Hansson L, Dostalek M, Sorenby B (1989) Production of γ-linolenic acid by the fungus Mucor rouxii in fed-batch and continuous culture. Appl Microbiol Biotechnol 31(3):223–227

    Article  CAS  Google Scholar 

  18. Hiruta O, Yamamura K, Takebe H, Futamura T, Iinuma K, Tanaka H (1997) Application of Maxblend Fermentor® for microbial processes. J Ferment Bioeng 83(1):79–86

    Article  CAS  Google Scholar 

  19. Hsu R, Lardy H (1969) Malic enzyme. Methods Enzymol 13:230–235

    Article  CAS  Google Scholar 

  20. Immelman M, du Preez JC, Kilian SG (1997) Effect of C: N Ratio on Gamma-linolenic Acid Production by Mucor circinelloides Grown on Acetic Acid. Syst Appl Microbiol 20(1):158–164

    Article  CAS  Google Scholar 

  21. Kavadia A, Komaitis M, Chevalot I, Blanchard F, Marc I, Aggelis G (2001) Lipid and γ-linolenic acid accumulation in strains of Zygomycetes growing on glucose. J Am Oil Chem Soc 78(4):341–346

    Article  CAS  Google Scholar 

  22. Kendrick A, Ratledge C (1992) Desaturation of polyunsaturated fatty acids in Mucor circinelloides and the involvement of a novel membrane-bound malic enzyme. Eur J Biochem 209(2):667–673

    Article  PubMed  CAS  Google Scholar 

  23. Kornberg A (1955) Isocitrate dehydrogenase of yeast (DPN). Methods Enzymol 1:707–709

    Article  CAS  Google Scholar 

  24. Lubbehusen TL, Nielsen J, Mcintyre M (2004) Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth. Appl Microbiol Biotechnol 63(5):543–548

    Article  PubMed  CAS  Google Scholar 

  25. Lan WZ, Qin WM, Yu LJ (2002) Effect of glutamate on arachidonic acid production from Mortierella alpina. Lett Appl Microbiol 35(4):357–360

    Article  PubMed  CAS  Google Scholar 

  26. Langdon RG (1966) Glucose 6-phosphate dehydrogenase from erythrocytes. Methods Enzymol 9:126–131

    Article  CAS  Google Scholar 

  27. Li Y, Chen J, Liang D-F, Lun S-Y (2000) Effect of nitrogen source and nitrogen concentration on the production of pyruvate by Torulopsis glabrata. J Biotechnol 81(1):27–34

    Article  PubMed  CAS  Google Scholar 

  28. Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636

    Article  PubMed  CAS  Google Scholar 

  29. Lu J, Peng C, Ji X-J, You J, Cong L, Ouyang P, Huang H (2011) Fermentation characteristics of Mortierella alpina in response to different nitrogen sources. Appl Biochem Biotechnol 164(7):979–990

    Article  PubMed  CAS  Google Scholar 

  30. Nancib N, Nancib A, Boudjelal A, Benslimane C, Blanchard F, Boudrant J (2001) The effect of supplementation by different nitrogen sources on the production of lactic acid from date juice by Lactobacillus casei subsp. rhamnosus. Bioresour Technol 78(2):149–153

    Article  PubMed  CAS  Google Scholar 

  31. Papanikolaou S, Aggelis G (2003) Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats. Curr Microbiol 46(6):0398–0402

    Article  CAS  Google Scholar 

  32. Papanikolaou S, Galiotou-Panayotou M, Chevalot I, Komaitis M, Marc I, Aggelis G (2006) Influence of glucose and saturated free-fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica. Curr Microbiol 52(2):134–142

    Article  PubMed  CAS  Google Scholar 

  33. Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G (2007) Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. Eur J Lipid Sci Technol 109(11):1060–1070

    Article  CAS  Google Scholar 

  34. Papanikolaou S, Komaitis M, Aggelis G (2004) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95(3):287–291

    Article  PubMed  CAS  Google Scholar 

  35. Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2003) Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol 46(2):124–130

    Article  PubMed  CAS  Google Scholar 

  36. Papanikolaou S, Sarantou S, Komaitis M, Aggelis G (2004) Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. J Appl Microbiol 97(4):867–875

    Article  PubMed  CAS  Google Scholar 

  37. Park EY, Koike Y, Higashiyama K, Fujikawa S, Okabe M (1999) Effect of nitrogen source on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina. J Biosci Bioeng 88(1):61–67

    Article  PubMed  CAS  Google Scholar 

  38. Paula Alonso A, Dale VL, Shachar-Hill Y (2010) Understanding fatty acid synthesis in developing maize embryos using metabolic flux analysis. Metab Eng 12(5):488–497

    Article  CAS  Google Scholar 

  39. Pontremoli S, Grazi E (1966) 6-Phosphogluconate dehydrogenase-Crystalline. Methods Enzymol 9:137–141

    Article  CAS  Google Scholar 

  40. Ratledge C, Akoh C (2006) Microbial production of γ-linolenic acid. Handbook of functional lipids. Taylor & Francis, Baco Raton, pp 19–45

    Google Scholar 

  41. Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  PubMed  CAS  Google Scholar 

  42. Rodríguez-Frómeta RA, Gutiérrez A, Torres-Martínez S, Garre V (2013) Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 97(7):3063–3072

    Article  PubMed  Google Scholar 

  43. Sokolov D, Sharyshev A, Finogenova T (1995) Subcellular location of enzymes mediating glucose metabolism in various groups of yeasts. Biochemistry-New York-English Translation of Biokhimiya 60(10):1325–1332

    Google Scholar 

  44. Somashekar D, Venkateshwaran G, Sambaiah K, Lokesh B (2003) Effect of culture conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Process Biochem 38(12):1719–1724

    Article  CAS  Google Scholar 

  45. Srere PA (1959) The citrate cleavage enzyme I. Distribution and purification. J Biol Chem 234(10):2544–2547

    PubMed  CAS  Google Scholar 

  46. Tamano K, Bruno KS, Karagiosis SA, Culley DE, Deng S, Collett JR, Umemura M, Koike H, Baker SE, Machida M (2013) Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol Biotechnol 97(1):269–281

    Article  PubMed  CAS  Google Scholar 

  47. Vamvakaki AN, Kandarakis I, Kaminarides S, Komaitis M, Papanikolaou S (2010) Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng Life Sci 10(4):348–360

    Article  CAS  Google Scholar 

  48. Wynn JP, bin Abdul Hamid A, Ratledge C (1999) The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145(8):1911–1917

    Article  PubMed  CAS  Google Scholar 

  49. Wynn JP, Ratledge C (1997) Malic enzyme is a major source of NADPH for lipid accumulation by Aspergillus nidulans. Microbiology 143(1):253–257

    Article  CAS  Google Scholar 

  50. Xiong W, Liu L, Wu C, Yang C, Wu Q (2010) 13C-tracer and gas chromatography-mass spectrometry analyses reveal metabolic flux distribution in the oleaginous microalga Chlorella protothecoides. Plant Physiol 154(2):1001–1011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Zikou E, Chatzifragkou A, Koutinas A, Papanikolaou S (2013) Evaluating glucose and xylose as cosubstrates for lipid accumulation and γ-linolenic acid biosynthesis of Thamnidium elegans. J Appl Microbiol 114(4):1020–1032

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (31271812, 21276108), the National High Technology Research and Development Program of China (863 Program 2012AA022105C), Strategic Mérieux Research Grant, the Program for New Century Excellent Talents (NCET-13-0831), the National Science Fund for Distinguished Young Scholars (31125021), and the Fundamental Research Funds for the Central Universities (No. JUSRP51320B). We thank Professor Colin Ratledge for his critical comments to our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanda Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Zhang, H., Chen, H. et al. Effects of 20 Standard Amino Acids on the Growth, Total Fatty Acids Production, and γ-Linolenic Acid Yield in Mucor circinelloides . Curr Microbiol 69, 899–908 (2014). https://doi.org/10.1007/s00284-014-0671-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0671-z

Keywords

Navigation