Skip to main content

Advertisement

Log in

Metabolic regulation and function of T helper cells in neuroinflammation

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Neuroinflammatory conditions such as multiple sclerosis (MS) are initiated by pathogenic immune cells invading the central nervous system (CNS). Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in MS and in other neuroinflammatory autoimmune diseases including animal models that have been developed for MS. T helper cells are classically categorized into different subsets, but heterogeneity exists within these subsets. Untangling the more complex regulation of these subsets will clarify their functional roles in neuroinflammation. Here, we will discuss how differentiation, immune checkpoint pathways, transcriptional regulation and metabolic factors determine the function of CD4+ T cell subsets in CNS autoimmunity. T cells rely on metabolic reprogramming for their activation and proliferation to meet bioenergetic demands. This includes changes in glycolysis, glutamine metabolism and polyamine metabolism. Importantly, these pathways were recently also implicated in the fine tuning of T cell fate decisions during neuroinflammation. A particular focus of this review will be on the Th17/Treg balance and intra-subset functional states that can either promote or dampen autoimmune responses in the CNS and thus affect disease outcome. An increased understanding of factors that could tip CD4+ T cell subsets and populations towards an anti-inflammatory phenotype will be critical to better understand neuroinflammatory diseases and pave the way for novel treatment paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arcuri C, Mecca C, Giambanco I, Donato R (2019) Parenchymal and non-parenchymal immune cells in the brain: a critical role in regulating CNS functions. Int J Dev Neurosci 77:26–38

    Article  PubMed  Google Scholar 

  2. Engelhardt B, Carare RO, Bechmann I, Flügel A, Laman JD, Weller RO (2016) Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol 132:317–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, Merkler D, Greter M, Becher B (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48(380–95):e6

    Google Scholar 

  5. Van Hove H, Martens L, Scheyltjens I, De Vlaminck K, Pombo Antunes AR, De Prijck S, Vandamme N, De Schepper S, Van Isterdael G, Scott CL, Aerts J, Berx G, Boeckxstaens GE, Vandenbroucke RE, Vereecke L, Moechars D, Guilliams M, Van Ginderachter JA, Saeys Y, Movahedi K (2019) A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci 22:1021–1035

    Article  PubMed  Google Scholar 

  6. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F (2009) CC chemokine receptor 6–regulated entry of T H-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10:514

    Article  CAS  PubMed  Google Scholar 

  7. Bartholomäus I, Kawakami N, Odoardi F, Schläger C, Miljkovic D, Ellwart JW, Klinkert WE, Flügel-Koch C, Issekutz TB, Wekerle H (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462:94–98

    Article  PubMed  Google Scholar 

  8. Christy AL, Walker ME, Hessner MJ, Brown MA (2013) Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE. J Autoimmun 42:50–61

    Article  CAS  PubMed  Google Scholar 

  9. Tsuchida M, Hanawa H, Hirahara H, Watanabe H, Matsumoto Y, Sekikawa H, Abo T (1994) Identification of CD4-CD8-alpha beta T cells in the subarachnoid space of rats with experimental autoimmune encephalomyelitis A possible route by which effector cells invade the lesions. Immunology 81:420

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Lassmann H (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189

    Article  PubMed  PubMed Central  Google Scholar 

  11. Goodnow CC (2007) Multistep pathogenesis of autoimmune disease. Cell 130:25–35

    Article  CAS  PubMed  Google Scholar 

  12. Hasselmann JPC, Karim H, Khalaj AJ, Ghosh S, Tiwari-Woodruff SK (2017) Consistent induction of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice for the longitudinal study of pathology and repair. J Neurosci Methods 284:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baxter AG (2007) The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7:904–912

    Article  CAS  PubMed  Google Scholar 

  14. Mangiardi M, Crawford DK, Xia X, Du S, Simon-Freeman R, Voskuhl RR, Tiwari-Woodruff SK (2011) An animal model of cortical and callosal pathology in multiple sclerosis. Brain Pathol 21:263–278

    Article  PubMed  Google Scholar 

  15. Sternberger NH, McFarlin DE, Traugott U, Raine CS (1984) Myelin basic protein and myelin-associated glycoprotein in chronic, relapsing experimental allergic encephalomyelitis. J Neuroimmunol 6:217–229

    Article  CAS  PubMed  Google Scholar 

  16. Wekerle H, Kojima K, Lannes-Vieira J, Lassmann H, Linington C (1994) Animal models. Ann Neurol 36(Suppl):S47-53

    Article  CAS  PubMed  Google Scholar 

  17. Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA, Kuchroo VK (2003) Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 197:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Flach AC, Litke T, Strauss J, Haberl M, Gomez CC, Reindl M, Saiz A, Fehling HJ, Wienands J, Odoardi F, Luhder F, Flugel A (2016) Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A 113:3323–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ford AL, Goodsall AL, Hickey WF, Sedgwick JD (1995) Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol 154:4309–4321

    CAS  PubMed  Google Scholar 

  20. Jordao MJC, Sankowski R, Brendecke SM, Sagar, Locatelli G, Tai YH, Tay TL, Schramm E, Armbruster S, Hagemeyer N, Gross O, Mai D, Cicek O, Falk T, Kerschensteiner M, Grun D, Prinz M (2019) Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363

  21. Knier B, Hiltensperger M, Sie C, Aly L, Lepennetier G, Engleitner T, Garg G, Muschaweckh A, Mitsdorffer M, Koedel U, Hochst B, Knolle P, Gunzer M, Hemmer B, Rad R, Merkler D, Korn T (2018) Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity. Nat Immunol 19:1341–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lassmann H, Bradl M (2017) Multiple sclerosis: experimental models and reality. Acta Neuropathol 133:223–244

    Article  CAS  PubMed  Google Scholar 

  23. Leuenberger T, Paterka M, Reuter E, Herz J, Niesner RA, Radbruch H, Bopp T, Zipp F, Siffrin V (2013) The role of CD8+ T cells and their local interaction with CD4+ T cells in myelin oligodendrocyte glycoprotein35-55-induced experimental autoimmune encephalomyelitis. J Immunol 191:4960–4968

    Article  CAS  PubMed  Google Scholar 

  24. Miller SD, McMahon EJ, Schreiner B, Bailey SL (2007) Antigen presentation in the CNS by myeloid dendritic cells drives progression of relapsing experimental autoimmune encephalomyelitis. Ann N Y Acad Sci 1103:179–191

    Article  CAS  PubMed  Google Scholar 

  25. Molnarfi N, Schulze-Topphoff U, Weber MS, Patarroyo JC, Prod’homme T, Varrin-Doyer M, Shetty A, Linington C, Slavin AJ, Hidalgo J, Jenne DE, Wekerle H, Sobel RA, Bernard CC, Shlomchik MJ, Zamvil SS (2013) MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J Exp Med 210:2921–2937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saligrama N, Zhao F, Sikora MJ, Serratelli WS, Fernandes RA, Louis DM, Yao W, Ji X, Idoyaga J, Mahajan VB, Steinmetz LM, Chien YH, Hauser SL, Oksenberg JR, Garcia KC, Davis MM (2019) Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature 572:481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thi Cuc B, Pohar J, Fillatreau S (2019) Understanding regulatory B cells in autoimmune diseases: the case of multiple sclerosis. Curr Opin Immunol 61:26–32

    Article  CAS  PubMed  Google Scholar 

  28. Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11:195–199

    Article  CAS  PubMed  Google Scholar 

  29. Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE (1989) Encephalitogenic T cells in the B10. PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 124:132–143

    Article  CAS  PubMed  Google Scholar 

  30. Baron JL, Madri JA, Ruddle NH, Hashim G, Janeway CA Jr (1993) Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 177:57–68

    Article  CAS  PubMed  Google Scholar 

  31. Merrill JE, Kono DH, Clayton J, Ando DG, Hinton DR, Hofman FM (1992) Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10. PL mice. Proc Natl Acad Sci 89:574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jager A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo VK (2009) Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 183:7169–7177

    Article  PubMed  Google Scholar 

  33. Furlan R, Brambilla E, Ruffini F, Poliani PL, Bergami A, Marconi PC, Franciotta DM, Penna G, Comi G, Adorini L (2001) Intrathecal delivery of IFN-γ protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalomyelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes. J Immunol 167:1821–1829

    Article  CAS  PubMed  Google Scholar 

  34. Naves R, Singh SP, Cashman KS, Rowse AL, Axtell RC, Steinman L, Mountz JD, Steele C, De Sarno P, Raman C (2013) The interdependent, overlapping, and differential roles of type I and II IFNs in the pathogenesis of experimental autoimmune encephalomyelitis. J Immunol 191:2967–2977

    Article  CAS  PubMed  Google Scholar 

  35. Tanuma N, Shin T, Kogure K, Matsumoto Y (1999) Differential role of TNF-α and IFN-γ in the brain of rats with chronic relapsing autoimmune encephalomyelitis. J Neuroimmunol 96:73–79

    Article  CAS  PubMed  Google Scholar 

  36. Ferber IA, Brocke S, Taylor-Edwards C, Ridgway W, Dinisco C, Steinman L, Dalton D, Fathman CG (1996) Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 156:5–7

    CAS  PubMed  Google Scholar 

  37. Panitch HS, Hirsch RL, Schindler J, Johnson KP (1987) Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37:1097

    Article  CAS  PubMed  Google Scholar 

  38. Segal BM, Dwyer BK, Shevach EM (1998) An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J Exp Med 187:537–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu Y, Abrams JS, Moore KW, Rennick D, de Waal-Malefyt R, Hannum C, Bazan JF, Kastelein RA (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725

    Article  CAS  PubMed  Google Scholar 

  40. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  CAS  PubMed  Google Scholar 

  41. Gran B, Zhang GX, Yu S, Li J, Chen XH, Ventura ES, Kamoun M, Rostami A (2002) IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 169:7104–7110

    Article  CAS  PubMed  Google Scholar 

  42. Becher B, Durell BG, Noelle RJ (2002) Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Investig 110:493–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH 17 and regulatory T cells. Nature 441:235–238

    Article  CAS  PubMed  Google Scholar 

  45. Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, Wu C, Kleinewietfeld M, Kunder S, Hafler DA, Sobel RA, Regev A, Kuchroo VK (2012) Induction and molecular signature of pathogenic TH17 cells. Nat Immunol 13:991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gyülvészi G, Haak S, Becher B (2009) IL-23-driven encephalo-tropism and Th17 polarization during CNS-inflammation in vivo. Eur J Immunol 39:1864–1869

    Article  PubMed  Google Scholar 

  47. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ (2007) TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell–mediated pathology. Nat Immunol 8:1390–1397

    Article  CAS  PubMed  Google Scholar 

  48. Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, Ramos HL, Wei L, Davidson TS, Bouladoux N, Grainger JR, Chen Q, Kanno Y, Watford WT, Sun HW, Eberl G, Shevach EM, Belkaid Y, Cua DJ, Chen W, O’Shea JJ (2010) Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467:967–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–189

    Article  CAS  PubMed  Google Scholar 

  50. Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, Oukka M, Kuchroo VK (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234

    Article  CAS  PubMed  Google Scholar 

  52. Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F, Gattorno M, Monticelli S, Lanzavecchia A, Sallusto F (2012) Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 484:514–518

    Article  CAS  PubMed  Google Scholar 

  53. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172:146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cao Y, Goods BA, Raddassi K, Nepom GT, Kwok WW, Love JC, Hafler DA (2015) Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci Transl Med 7:287ra74-ra74

    Article  PubMed  PubMed Central  Google Scholar 

  55. Havrdova E, Belova A, Goloborodko A, Tisserant A, Wright A, Wallstroem E, Garren H, Maguire RP, Johns DR (2016) Activity of secukinumab, an anti-IL-17A antibody, on brain lesions in RRMS: results from a randomized, proof-of-concept study. J Neurol 263:1287–1295

    Article  CAS  PubMed  Google Scholar 

  56. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177:566–573

    Article  CAS  PubMed  Google Scholar 

  57. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang Y-H, Wang Y, Hood L, Zhu Z, Tian Q (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Haak S, Croxford AL, Kreymborg K, Heppner FL, Pouly S, Becher B, Waisman A (2009) IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Investig 119:61–69

    CAS  PubMed  Google Scholar 

  59. Regen T, Isaac S, Amorim A, Nunez NG, Hauptmann J, Shanmugavadivu A, Klein M, Sankowski R, Mufazalov IA, Yogev N, Huppert J, Wanke F, Witting M, Grill A, Galvez EJC, Nikolaev A, Blanfeld M, Prinz I, Schmitt-Kopplin P, Strowig T, Reinhardt C, Prinz M, Bopp T, Becher B, Ubeda C, Waisman A (2021) IL-17 controls central nervous system autoimmunity through the intestinal microbiome. Sci Immunol 6(56):eaaz6563

  60. El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang G-X, Dittel BN, Rostami A (2011) The encephalitogenicity of T H 17 cells is dependent on IL-1-and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 12:568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McQualter JL, Darwiche R, Ewing C, Onuki M, Kay TW, Hamilton JA, Reid HH, Bernard CCA (2001) Granulocyte macrophage colony-stimulating factor. J Exp Med 194:873–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D, Dittel BN (2007) GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol 178:39–48

    Article  CAS  PubMed  Google Scholar 

  63. Codarri L, Gyülvészi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B (2011) RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12:560

    Article  CAS  PubMed  Google Scholar 

  64. Komuczki J, Tuzlak S, Friebel E, Hartwig T, Spath S, Rosenstiel P, Waisman A, Opitz L, Oukka M, Schreiner B, Pelczar P, Becher B (2019) Fate-mapping of GM-CSF expression identifies a discrete subset of inflammation-driving T helper cells regulated by cytokines IL-23 and IL-1beta. Immunity 50(1289–304):e6

    Google Scholar 

  65. Tuzlak S, Dejean AS, Iannacone M, Quintana FJ, Waisman A, Ginhoux F, Korn T, Becher B (2021) Repositioning TH cell polarization from single cytokines to complex help. Nat Immunol 22:1210–1217

    Article  CAS  PubMed  Google Scholar 

  66. Rasouli J, Casella G, Yoshimura S, Zhang W, Xiao D, Garifallou J, Gonzalez MV, Wiedeman A, Kus A, Mari ER, Fortina P, Hakonarson H, Long SA, Zhang GX, Ciric B, Rostami A (2020) A distinct GM-CSF(+) T helper cell subset requires T-bet to adopt a TH1 phenotype and promote neuroinflammation. Sci Immunol 5(52):eaba9953

  67. Hiltensperger M, Beltrán E, Kant R, Tyystjärvi S, Lepennetier G, Domínguez Moreno H, Bauer IJ, Grassmann S, Jarosch S, Schober K, Buchholz VR, Kenet S, Gasperi C, Öllinger R, Rad R, Muschaweckh A, Sie C, Aly L, Knier B, Garg G, Afzali AM, Gerdes LA, Kümpfel T, Franzenburg S, Kawakami N, Hemmer B, Busch DH, Misgeld T, Dornmair K, Korn T (2021) Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity. Nat Immunol 22:880–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schnell A, Huang L, Singer M, Singaraju A, Barilla RM, Regan BML, Bollhagen A, Thakore PI, Dionne D, Delorey TM, Pawlak M, Horste Meyer Zu, G, Rozenblatt-Rosen O, Irizarry RA, Regev A, Kuchroo VK, (2021) Stem-like intestinal Th17 cells give rise to pathogenic effector T cells during autoimmunity. Cell 184(26):6281–6298.e23

    Article  CAS  PubMed  Google Scholar 

  69. Gaublomme JT, Yosef N, Lee Y, Gertner RS, Yang LV, Wu C, Pandolfi PP, Mak T, Satija R, Shalek AK, Kuchroo VK, Park H, Regev A (2015) Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163:1400–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hartmann FJ, Khademi M, Aram J, Ammann S, Kockum I, Constantinescu C, Gran B, Piehl F, Olsson T, Codarri L, Becher B (2014) Multiple sclerosis-associated IL2RA polymorphism controls GM-CSF production in human TH cells. Nat Commun 5:5056

    Article  CAS  PubMed  Google Scholar 

  71. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 22:329–341

    Article  CAS  PubMed  Google Scholar 

  72. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko S-A, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73

    Article  CAS  PubMed  Google Scholar 

  73. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata N, Doetschman T (1992) Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359:693–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Marie JC, Letterio JJ, Gavin M, Rudensky AY (2005) TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med 201:1061–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Apostolou I, Sarukhan A, Klein L, Von Boehmer H (2002) Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3:756–763

    Article  CAS  PubMed  Google Scholar 

  76. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Korn T, Reddy J, Gao W, Bettelli E, Awasthi A, Petersen TR, Bäckström BT, Sobel RA, Wucherpfennig KW, Strom TB, Oukka M, Kuchroo VK (2007) Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med 13:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. O’Connor RA, Malpass KH, Anderton SM (2007) The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells. J Immunol 179:958–966

    Article  CAS  PubMed  Google Scholar 

  79. Lowther DE, Chong DL, Ascough S, Ettorre A, Ingram RJ, Boyton RJ, Altmann DM (2013) Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response. Acta Neuropathol 126:501–515

    Article  CAS  PubMed  Google Scholar 

  80. Kohm AP, Carpentier PA, Anger HA, Miller SD (2002) Cutting Edge: CD4+CD25+ Regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 169:4712–4716

    Article  CAS  PubMed  Google Scholar 

  81. McGeachy MJ, Stephens LA, Anderton SM (2005) Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol 175:3025–3032

    Article  CAS  PubMed  Google Scholar 

  82. Koutrolos M, Berer K, Kawakami N, Wekerle H, Krishnamoorthy G (2014) Treg cells mediate recovery from EAE by controlling effector T cell proliferation and motility in the CNS. Acta Neuropathol Commun 2:163

    Article  PubMed  PubMed Central  Google Scholar 

  83. Krovi SH, Kuchroo VK (2022) Activation pathways that drive CD4(+) T cells to break tolerance in autoimmune diseases. Immunol Rev

  84. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547

    Article  CAS  PubMed  Google Scholar 

  85. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988

    Article  CAS  PubMed  Google Scholar 

  86. Klocke K, Sakaguchi S, Holmdahl R, Wing K (2016) Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc Natl Acad Sci U S A 113:E2383–E2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Paterson AM, Lovitch SB, Sage PT, Juneja VR, Lee Y, Trombley JD, Arancibia-Cárcamo CV, Sobel RA, Rudensky AY, Kuchroo VK, Freeman GJ, Sharpe AH (2015) Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J Exp Med 212:1603–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Salama AD, Chitnis T, Imitola J, Ansari MJI, Akiba H, Tushima F, Azuma M, Yagita H, Sayegh MH, Khoury SJ (2003) Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 198:71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tan CL, Kuchroo JR, Sage PT, Liang D, Francisco LM, Buck J, Thaker YR, Zhang Q, McArdel SL, Juneja VR, Lee SJ, Lovitch SB, Lian C, Murphy GF, Blazar BR, Vignali DAA, Freeman GJ, Sharpe AH (2021) PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. Journal of Experimental Medicine 218

  90. Sage PT, Schildberg FA, Sobel RA, Kuchroo VK, Freeman GJ, Sharpe AH (2018) Dendritic Cell PD-L1 limits autoimmunity and follicular T cell differentiation and function. J Immunol 200:2592–2602

    Article  CAS  PubMed  Google Scholar 

  91. Schnell A, Bod L, Madi A, Kuchroo VK (2020) The yin and yang of co-inhibitory receptors: toward anti-tumor immunity without autoimmunity. Cell Res 30:285–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, Sharpe AH, Kuchroo VK (2011) Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol 186:1338–1342

    Article  CAS  PubMed  Google Scholar 

  93. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, Eaton D, Grogan JL (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10:48–57

    Article  CAS  PubMed  Google Scholar 

  94. Joller N, Lozano E, Patrick PB, Xiao S, Zhu C, Xia J, Tze SE, Yajnik V, Arlene F, Mathis D, Benoist C, David V (2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40:569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6:1245–1252

    Article  CAS  PubMed  Google Scholar 

  96. Dekruyff RH, Bu X, Ballesteros A, Santiago C, Chim Y-LE, Lee H-H, Karisola P, Pichavant M, Kaplan GG, Umetsu DT, Freeman GJ, Casasnovas JM (2010) T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 184:1918–1930

    Article  CAS  PubMed  Google Scholar 

  97. Huang Y-H, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, Dougan SK, Petersen B-S, Melum E, Pertel T, Clayton KL, Raab M, Chen Q, Beauchemin N, Yazaki PJ, Pyzik M, Ostrowski MA, Glickman JN, Rudd CE, Ploegh HL, Franke A, Petsko GA, Kuchroo VK, Blumberg RS (2015) CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517:386–390

    Article  CAS  PubMed  Google Scholar 

  98. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, Manning S, Greenfield EA, Coyle AJ, Sobel RA, Freeman GJ, Kuchroo VK (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415:536–541

    Article  CAS  PubMed  Google Scholar 

  99. Rangachari M, Zhu C, Sakuishi K, Xiao S, Karman J, Chen A, Angin M, Wakeham A, Greenfield EA, Sobel RA, Okada H, McKinnon PJ, Mak TW, Addo MM, Anderson AC, Kuchroo VK (2012) Bat3 promotes T cell responses and autoimmunity by repressing Tim-3–mediated cell death and exhaustion. Nat Med 18:1394–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhu C, Dixon KO, Newcomer K, Gu G, Xiao S, Zaghouani S, Schramm MA, Wang C, Zhang H, Goto K, Christian E, Rangachari M, Rosenblatt-Rosen O, Okada H, Mak T, Singer M, Regev A, Kuchroo V (2021) Tim-3 adaptor protein Bat3 is a molecular checkpoint of T cell terminal differentiation and exhaustion. Science Advances 7:eabd2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang L, Anderson DE, Kuchroo J, Hafler DA (2008) Lack of TIM-3 immunoregulation in multiple sclerosis. J Immunol 180:4409–4414

    Article  CAS  PubMed  Google Scholar 

  102. Huard B, Prigent P, Tournier M, Bruniquel D, Triebel F (1995) CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur J Immunol 25:2718–2721

    Article  CAS  PubMed  Google Scholar 

  103. Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z, Du X, Tang L, He F (2014) LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Can Res 74:3418–3428

    Article  CAS  Google Scholar 

  104. Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J, Chen L, Chen Y, Zhu G, Yin W, Zheng L, Zhou T, Badri T, Yao S, Zhu S, Boto A, Sznol M, Melero I, Vignali DAA, Schalper K, Chen L (2019) Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell 176:334–47.e12

    Article  CAS  PubMed  Google Scholar 

  105. Kadowaki A, Miyake S, Saga R, Chiba A, Mochizuki H, Yamamura T (2016) Gut environment-induced intraepithelial autoreactive CD4+ T cells suppress central nervous system autoimmunity via LAG-3. Nat Commun 7:11639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Andrews LP, Somasundaram A, Moskovitz JM, Szymczak-Workman AL, Liu C, Cillo AR, Lin H, Normolle DP, Moynihan KD, Taniuchi I, Irvine DJ, Kirkwood JM, Lipson EJ, Ferris RL, Bruno TC, Workman CJ, Vignali DAA (2020) Resistance to PD1 blockade in the absence of metalloprotease-mediated LAG3 shedding. Sci Immunol 5(49):eabc2728

  107. Peters A, Burkett PR, Sobel RA, Buckley CD, Watson SP, Bettelli E, Kuchroo VK (2015) Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Investig 125:129–140

    Article  PubMed  Google Scholar 

  108. Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y, Awasthi A, Wu C, Karwacz K, Xiao S, Jorgolli M, Gennert D, Satija R, Shakya A, Lu DY, Trombetta JJ, Pillai MR, Ratcliffe PJ, Coleman ML, Bix M, Tantin D, Park H, Kuchroo VK, Regev A (2013) Dynamic regulatory network controlling TH17 cell differentiation. Nature 496:461–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kishi Y, Kondo T, Xiao S, Yosef N, Gaublomme J, Wu C, Wang C, Chihara N, Regev A, Joller N, Kuchroo VK (2016) Protein C receptor (PROCR) is a negative regulator of Th17 pathogenicity. J Exp Med 213:2489–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Han MH, Hwang S-I, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B, Robinson WH, Baranzini SE, Grinnell BW, Raine CS, Sobel RA, Han DK, Steinman L (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451:1076–1081

    Article  CAS  PubMed  Google Scholar 

  111. Eisenstein-2009-The-treg-th-cell-balance-a-new-para.pdf

  112. Omenetti S, Pizarro TT (2015) The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome. Front Immunol 6:639

    Article  PubMed  PubMed Central  Google Scholar 

  113. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, Kuchroo VK, Hafler DA (2008) IL-21 and TGF-β are required for differentiation of human TH17 cells. Nature 454:350–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xu L, Kitani A, Fuss I, Strober W (2007) Cutting edge: regulatory T cells induce CD4+CD25−Foxp3− T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β. J Immunol 178:6725–6729

    Article  CAS  PubMed  Google Scholar 

  115. Antebi YE, Reich-Zeliger S, Hart Y, Mayo A, Eizenberg I, Rimer J, Putheti P, Pe’er D, Friedman N (2013) Mapping differentiation under mixed culture conditions reveals a tunable continuum of T cell fates. PLoS Biol 11:e1001616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K, Obata Y, Gaboriau-Routhiau V, Marques R, Dulauroy S, Fedoseeva M, Busslinger M, Cerf-Bensussan N, Boneca IG, Voehringer D, Hase K, Honda K, Sakaguchi S, Eberl G (2015) MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science 349:989–993

    Article  CAS  PubMed  Google Scholar 

  117. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, Dong C (2007) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282:9358–9363

    Article  CAS  PubMed  Google Scholar 

  118. Schraml BU, Hildner K, Ise W, Lee WL, Smith WA, Solomon B, Sahota G, Sim J, Mukasa R, Cemerski S, Hatton RD, Stormo GD, Weaver CT, Russell JH, Murphy TL, Murphy KM (2009) The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 460:405–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Okamoto K, Iwai Y, Oh-Hora M, Yamamoto M, Morio T, Aoki K, Ohya K, Jetten AM, Akira S, Muta T, Takayanagi H (2010) IkappaBzeta regulates T(H)17 development by cooperating with ROR nuclear receptors. Nature 464:1381–1385

    Article  CAS  PubMed  Google Scholar 

  120. Brustle A, Heink S, Huber M, Rosenplanter C, Stadelmann C, Yu P, Arpaia E, Mak TW, Kamradt T, Lohoff M (2007) The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 8:958–966

    Article  PubMed  Google Scholar 

  121. Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, Luo W, Zeller K, Shimoda L, Topalian SL, Semenza GL, Dang CV, Pardoll DM, Pan F (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146:772–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang F, Meng G, Strober W (2008) Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol 9:1297–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bauquet AT, Jin H, Paterson AM, Mitsdoerffer M, Ho IC, Sharpe AH, Kuchroo VK (2009) The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 10:167–175

    Article  CAS  PubMed  Google Scholar 

  124. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109

    Article  CAS  PubMed  Google Scholar 

  125. Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, Wu C, Kleinewietfeld M, Kunder S, Hafler DA, Sobel RA, Regev A, Kuchroo VK (2012) Induction and molecular signature of pathogenic TH17 cells. Nat Immunol 13:991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, Shah B, Chang SH, Schluns KS, Watowich SS, Feng X-H, Jetten AM, Dong C (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Reynolds ND, Lukacs NW, Long N, Karpus WJ (2011) Delta-like ligand 4 regulates central nervous system T cell accumulation during experimental autoimmune encephalomyelitis. J Immunol 187:2803–2813

    Article  CAS  PubMed  Google Scholar 

  128. Bassil R, Zhu B, Lahoud Y, Riella LV, Yagita H, Elyaman W, Khoury SJ (2011) Notch ligand delta-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development. J Immunol 187:2322–2328

    Article  CAS  PubMed  Google Scholar 

  129. Jurynczyk M, Jurewicz A, Raine CS, Selmaj K (2008) Notch3 inhibition in myelin-reactive T cells down-regulates protein kinase Cθ and attenuates experimental autoimmune encephalomyelitis. J Immunol 180:2634–2640

    Article  CAS  PubMed  Google Scholar 

  130. Keerthivasan S, Suleiman R, Lawlor R, Roderick J, Bates T, Minter L, Anguita J, Juncadella I, Nickoloff BJ, Le Poole IC, Miele L, Osborne BA (2011) Notch signaling regulates mouse and human Th17 differentiation. J Immunol 187:692–701

    Article  CAS  PubMed  Google Scholar 

  131. Horste GMZ, Wu C, Wang C, Cong L, Pawlak M, Lee Y, Elyaman W, Xiao S, Regev A, Kuchroo VK (2016) RBPJ Controls development of pathogenic Th17 cells by regulating IL-23 receptor expression. Cell Rep 16:392–404

    Article  Google Scholar 

  132. Horste GMZ, Przybylski D, Schramm MA, Wang C, Schnell A, Lee Y, Sobel R, Regev A, Kuchroo VK (2018) Fas promotes t helper 17 cell differentiation and inhibits T helper 1 cell development by binding and sequestering transcription factor STAT1. Immunity 48(556–69):e7

    Google Scholar 

  133. Wang C, Collins M, Kuchroo VK (2015) Effector T cell differentiation: are master regulators of effector T cells still the masters? Curr Opin Immunol 37:6–10

    Article  PubMed  Google Scholar 

  134. Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM, Burzyn D, Ortiz-Lopez A, Lobera M, Yang J, Ghosh S, Earl A, Snapper SB, Jupp R, Kasper D, Mathis D, Benoist C (2015) MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science 349:993–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lochner M, Peduto L, Cherrier M, Sawa S, Langa F, Varona R, Riethmacher D, Si-Tahar M, Di Santo JP, Eberl GR (2008) In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. J Exp Med 205:1381–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cebula A, Seweryn M, Rempala GA, Pabla SS, McIndoe RA, Denning TL, Bry L, Kraj P, Kisielow P, Ignatowicz L (2013) Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 497:258–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio C-W, Santacruz N, Peterson DA, Stappenbeck TS, Hsieh C-S (2011) Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pratama A, Schnell A, Mathis D, Benoist C (2020) Developmental and cellular age direct conversion of CD4+ T cells into RORgamma+ or Helios+ colon Treg cells. J Exp Med 217

  139. Korn T, Muschaweckh A (2019) Stability and maintenance of Foxp3(+) Treg cells in non-lymphoid microenvironments. Front Immunol 10:2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cretney E, Xin A, Shi W, Minnich M, Masson F, Miasari M, Belz GT, Smyth GK, Busslinger M, Nutt SL, Kallies A (2011) The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol 12:304–311

    Article  CAS  PubMed  Google Scholar 

  141. Jain R, Chen Y, Kanno Y, Joyce-Shaikh B, Vahedi G, Hirahara K, Blumenschein WM, Sukumar S, Haines CJ, Sadekova S, McClanahan TK, McGeachy MJ, O’Shea JJ, Cua DJ (2016) Interleukin-23-induced transcription factor Blimp-1 promotes pathogenicity of T helper 17 cells. Immunity 44:131–142

    Article  CAS  PubMed  Google Scholar 

  142. Xiao S, Jin H, Korn T, Liu SM, Oukka M, Lim B, Kuchroo VK (2008) Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol 181:2277–2284

    Article  CAS  PubMed  Google Scholar 

  143. Osorio F, Leibundgut-Landmann S, Lochner M, Lahl K, Sparwasser T, Eberl G, Reis E, Sousa C (2008) DC activated via dectin-1 convert Treg into IL-17 producers. Eur J Immunol 38:3274–3281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-Hora M, Kodama T, Tanaka S, Bluestone JA, Takayanagi H (2014) Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 20:62–68

    Article  CAS  PubMed  Google Scholar 

  145. Ueno A, Jijon H, Chan R, Ford K, Hirota C, Kaplan GG, Beck PL, Iacucci M, Fort Gasia M, Barkema HW, Panaccione R, Ghosh S (2013) Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients. Inflamm Bowel Dis 19:2522–2534

    Article  PubMed  Google Scholar 

  146. Wang C, Yosef N, Gaublomme J, Wu C, Lee Y, Clish CB, Kaminski J, Xiao S, Horste MZ, G, Pawlak M, Kishi Y, Joller N, Karwacz K, Zhu C, Ordovas-Montanes M, Madi A, Wortman I, Miyazaki T, Sobel RA, Park H, Regev A, Kuchroo VK. (2015) CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163:1413–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N, Calabresi PA, Snyder SH (2018) Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 360:449–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kohlgruber AC, LaMarche NM, Lynch L (2016) Adipose tissue at the nexus of systemic and cellular immunometabolism. Semin Immunol 28:431–440

    Article  CAS  PubMed  Google Scholar 

  149. Lercher A, Baazim H, Bergthaler A (2020) Systemic immunometabolism: challenges and opportunities. Immunity 53:496–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Spiljar M, Steinbach K, Rigo D, Suarez-Zamorano N, Wagner I, Hadadi N, Vincenti I, Page N, Klimek B, Rochat MA, Kreutzfeldt M, Chevalier C, Stojanovic O, Bejuy O, Colin D, Mack M, Cansever D, Greter M, Merkler D, Trajkovski M (2021) Cold exposure protects from neuroinflammation through immunologic reprogramming. Cell Metab 33(2231–46):e8

    Google Scholar 

  151. Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y, Chen L, Phillips D, Weinstock GM, Fontana L, Cross AH, Zhou Y, Piccio L (2018) Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab 27(1222–35):e6

    Google Scholar 

  152. Geltink RIK, Kyle RL, Pearce EL (2018) Unraveling the complex interplay between T cell metabolism and function. Annu Rev Immunol 36:461–488

    Article  CAS  PubMed  Google Scholar 

  153. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16:769–777

    Article  CAS  PubMed  Google Scholar 

  154. Buck MD, O’Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, Qiu J, Kretz O, Braas D, van der Windt GJ, Chen Q, Huang SC, O’Neill CM, Edelson BT, Pearce EJ, Sesaki H, Huber TB, Rambold AS, Pearce EL (2016) Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166:63–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Klein Geltink RI, O’Sullivan D, Corrado M, Bremser A, Buck MD, Buescher JM, Firat E, Zhu X, Niedermann G, Caputa G, Kelly B, Warthorst U, Rensing-Ehl A, Kyle RL, Vandersarren L, Curtis JD, Patterson AE, Lawless S, Grzes K, Qiu J, Sanin DE, Kretz O, Huber TB, Janssens S, Lambrecht BN, Rambold AS, Pearce EJ, Pearce EL (2017) Mitochondrial priming by CD28. Cell 171(385–97):e11

    Google Scholar 

  156. Martínez-Reyes I, Chandel NS. 2020. Mitochondrial TCA cycle metabolites control physiology and disease. Nature Communications 11

  157. Devadas S, Zaritskaya L, Rhee SG, Oberley L, Williams MS (2002) Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation. J Exp Med 195:59–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, Wang CR, Schumacker PT, Licht JD, Perlman H, Bryce PJ, Chandel NS (2013) Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38:225–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Previte DM, O’Connor EC, Novak EA, Martins CP, Mollen KP, Piganelli JD (2017) Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation. PLoS One 12:e0175549

    Article  PubMed  PubMed Central  Google Scholar 

  160. Mak TW, Grusdat M, Duncan GS, Dostert C, Nonnenmacher Y, Cox M, Binsfeld C, Hao Z, Brüstle A, Itsumi M, Jäger C, Chen Y, Pinkenburg O, Camara B, Ollert M, Bindslev-Jensen C, Vasiliou V, Gorrini C, Lang PA, Lohoff M, Harris IS, Hiller K, Brenner D (2017) Glutathione primes T cell metabolism for inflammation. Immunity 46:675–689

    Article  CAS  PubMed  Google Scholar 

  161. Siska PJ, Kim B, Ji X, Hoeksema MD, Massion PP, Beckermann KE, Wu J, Chi J-T, Hong J, Rathmell JC (2016) Fluorescence-based measurement of cystine uptake through xCT shows requirement for ROS detoxification in activated lymphocytes. J Immunol Methods 438:51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Laniewski NG, Grayson JM (2004) Antioxidant treatment reduces expansion and contraction of antigen-specific CD8+ T cells during primary but not secondary viral infection. J Virol 78:11246–11257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wang R, Christopher L, Milasta S, Carter R, Finkelstein D, Laura FP, Chi H, Munger J, Douglas. (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, Turay AM, Frauwirth KA (2010) Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 185:1037–1044

    Article  CAS  PubMed  Google Scholar 

  165. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Noguchi T, Inoue H, Tanaka T (1986) The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem 261:13807–13812

    Article  CAS  PubMed  Google Scholar 

  167. Bowlin TL, McKown BJ, Babcock GF, Sunkara PS (1987) Intracellular polyamine biosynthesis is required for interleukin 2 responsiveness during lymphocyte mitogenesis. Cell Immunol 106:420–427

    Article  CAS  PubMed  Google Scholar 

  168. Andrew V, Amanda R, Michael DD, Steven E, Benny L, Jeffrey. (2014) The glucose transporter Glut1 Is selectively essential for CD4 T cell activation and effector function. Cell Metab 20:61–72

    Article  Google Scholar 

  169. Nakaya M, Xiao Y, Zhou X, Chang J-H, Chang M, Cheng X, Blonska M, Lin X, Sun S-C (2014) Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40:692–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, Winter PS, Liu X, Priyadharshini B, Slawinska ME, Haeberli L, Huck C, Turka LA, Wood KC, Hale LP, Smith PA, Schneider MA, Maciver NJ, Locasale JW, Newgard CB, Shinohara ML, Rathmell JC (2015) Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Investig 125:194–207

    Article  PubMed  Google Scholar 

  171. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, Maciver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186:3299–3303

    Article  CAS  PubMed  Google Scholar 

  172. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H (2011) HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208:1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Angelin A, Gil-De-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, Wang Z, Quinn WJ, Kopinski PK, Wang L, Akimova T, Liu Y, Bhatti TR, Han R, Laskin BL, Baur JA, Blair IA, Wallace DC, Hancock WW, Beier UH (2017) Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab 25:1282–93.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gerriets VA, Kishton RJ, Johnson MO, Cohen S, Siska PJ, Nichols AG, Warmoes MO, De Cubas AA, Maciver NJ, Locasale JW, Turka LA, Wells AD, Rathmell JC (2016) Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol 17:1459–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Layman AAK, Deng G, O’Leary CE, Tadros S, Thomas RM, Dybas JM, Moser EK, Wells AD, Doliba NM, Oliver PM (2017) Ndfip1 restricts mTORC1 signalling and glycolysis in regulatory T cells to prevent autoinflammatory disease. Nature Communications 8

  176. Pompura SL, Wagner A, Kitz A, Laperche J, Yosef N, Dominguez-Villar M, Hafler DA (2021) Oleic acid restores suppressive defects in tissue-resident FOXP3 Tregs from patients with multiple sclerosis. Journal of Clinical Investigation 131

  177. Wagner A, Wang C, Fessler J, DeTomaso D, Avila-Pacheco J, Kaminski J, Zaghouani S, Christian E, Thakore P, Schellhaass B, Akama-Garren E, Pierce K, Singh V, Ron-Harel N, Douglas VP, Bod L, Schnell A, Puleston D, Sobel RA, Haigis M, Pearce EL, Soleimani M, Clish C, Regev A, Kuchroo VK, Yosef N (2021) Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184(4168–85):e21

    Google Scholar 

  178. Omenetti S, Bussi C, Metidji A, Iseppon A, Lee S, Tolaini M, Li Y, Kelly G, Chakravarty P, Shoaie S, Gutierrez MG, Stockinger B (2019) The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity 51:77-89.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ditoro D, Harbour SN, Bando JK, Benavides G, Witte S, Laufer VA, Moseley C, Singer JR, Frey B, Turner H, Bruning J, Darley-Usmar V, Gao M, Conover C, Hatton RD, Frank S, Colonna M, Weaver CT (2020) Insulin-like growth factors are key regulators of T helper 17 regulatory T cell balance in autoimmunity. Immunity 52:650–67.e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhang D, Jin W, Wu R, Li J, Park SA, Tu E, Zanvit P, Xu J, Liu O, Cain A, Chen W (2019) High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-beta cytokine activation. Immunity 51(671–81):e5

    Google Scholar 

  181. Hochrein SM, Wu H, Eckstein M, Arrigoni L, Herman JS, Schumacher F, Gerecke C, Rosenfeldt M, Grun D, Kleuser B, Gasteiger G, Kastenmuller W, Ghesquiere B, Van den Bossche J, Abel ED, Vaeth M (2022) The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming. Cell Metab 34(516–32):e11

    Google Scholar 

  182. Wu L, Hollinshead KER, Hao Y, Au C, Kroehling L, Ng C, Lin W-Y, Li D, Silva HM, Shin J, Lafaille JJ, Possemato R, Pacold ME, Papagiannakopoulos T, Kimmelman AC, Satija R, Littman DR (2020) Niche-selective inhibition of pathogenic Th17 cells by targeting metabolic redundancy. Cell 182:641–54.e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kono M, Maeda K, Stocton-Gavanescu I, Pan W, Umeda M, Katsuyama E, Burbano C, Orite SYK, Vukelic M, Tsokos MG, Yoshida N, Tsokos GC (2019) Pyruvate kinase M2 is requisite for Th1 and Th17 differentiation. JCI Insight 4

  184. Koga T, Hedrich CM, Mizui M, Yoshida N, Otomo K, Lieberman LA, Rauen T, Crispín JC, Tsokos GC (2014) CaMK4-dependent activation of AKT/mTOR and CREM-α underlies autoimmunity-associated Th17 imbalance. J Clin Investig 124:2234–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Angiari S, Runtsch MC, Sutton CE, Palsson-McDermott EM, Kelly B, Rana N, Kane H, Papadopoulou G, Pearce EL, Mills KHG, O’Neill LAJ (2020) Pharmacological activation of pyruvate kinase M2 inhibits CD4(+) T cell pathogenicity and suppresses autoimmunity. Cell Metab 31(391–405):e8

    Google Scholar 

  186. Seki SM, Posyniak K, McCloud R, Rosen DA, Fernandez-Castaneda A, Beiter RM, Serbulea V, Nanziri SC, Hayes N, Spivey C, Gemta L, Bullock TNJ, Hsu KL, Gaultier A. 2020. Modulation of PKM activity affects the differentiation of TH17 cells. Sci Signal 13

  187. Klysz D, Tai X, Robert PA, Craveiro M, Cretenet G, Oburoglu L, Mongellaz C, Floess S, Fritz V, Matias MI, Yong C, Surh N, Marie JC, Huehn J, Zimmermann V, Kinet S, Dardalhon V, Taylor N (2015) Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal 8:ra7

    Article  Google Scholar 

  188. Xu T, Stewart KM, Wang X, Liu K, Xie M, Ryu JK, Li K, Ma T, Wang H, Ni L, Zhu S, Cao N, Zhu D, Zhang Y, Akassoglou K, Dong C, Driggers EM, Ding S (2017) Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 548:228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kono M, Yoshida N, Maeda K, Tsokos GC (2018) Transcriptional factor ICER promotes glutaminolysis and the generation of Th17 cells. Proc Natl Acad Sci U S A 115:2478–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC, Maseda D, Liberti MV, Paz K, Kishton RJ, Johnson ME, de Cubas AA, Wu P, Li G, Zhang Y, Newcomb DC, Wells AD, Restifo NP, Rathmell WK, Locasale JW, Davila ML, Blazar BR, Rathmell JC (2018) Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175(1780–95):e19

    Google Scholar 

  191. Kurniawan H, Franchina DG, Guerra L, Bonetti L, Baguet LS, Grusdat M, Schlicker L, Hunewald O, Dostert C, Merz MP, Binsfeld C, Duncan GS, Farinelle S, Nonnenmacher Y, Haight J, Das Gupta D, Ewen A, Taskesen R, Halder R, Chen Y, Jäger C, Ollert M, Wilmes P, Vasiliou V, Harris IS, Knobbe-Thomsen CB, Turner JD, Mak TW, Lohoff M, Meiser J, Hiller K, Brenner D (2020) Glutathione restricts serine metabolism to preserve regulatory T cell function. Cell Metab 31:920–36.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Puleston DJ, Baixauli F, Sanin DE, Edwards-Hicks J, Villa M, Kabat AM, Kamiński MM, Stanckzak M, Weiss HJ, Grzes KM, Piletic K, Field CS, Corrado M, Haessler F, Wang C, Musa Y, Schimmelpfennig L, Flachsmann L, Mittler G, Yosef N, Kuchroo VK, Buescher JM, Balabanov S, Pearce EJ, Green DR, Pearce EL (2021) Polyamine metabolism is a central determinant of helper T cell lineage fidelity. Cell 184:4186–202.e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wu R, Chen X, Kang S, Wang T, Gnanaprakasam JR, Yao Y, Liu L, Fan G, Burns MR, Wang R (2020) De novo synthesis and salvage pathway coordinately regulate polyamine homeostasis and determine T cell proliferation and function. Sci Adv 6

  194. Carriche GM, Almeida L, Stüve P, Velasquez L, Dhillon-Labrooy A, Roy U, Lindenberg M, Strowig T, Plaza-Sirvent C, Schmitz I, Lochner M, Simon AK, Sparwasser T (2021) Regulating T-cell differentiation through the polyamine spermidine. J Allerg Clin Immunol 147:335–48.e11

    Article  CAS  Google Scholar 

  195. Lu C, Craig. (2012) Metabolic Regulation of Epigenetics. Cell Metab 16:9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Schvartzman JM, Thompson CB, Finley LWS (2018) Metabolic regulation of chromatin modifications and gene expression. J Cell Biol 217:2247–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Roy DG, Chen J, Mamane V, Ma EH, Muhire BM, Sheldon RD, Shorstova T, Koning R, Johnson RM, Esaulova E, Williams KS, Hayes S, Steadman M, Samborska B, Swain A, Daigneault A, Chubukov V, Roddy TP, Foulkes W, Pospisilik JA, Bourgeois-Daigneault MC, Artyomov MN, Witcher M, Krawczyk CM, Larochelle C, Jones RG (2020) Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. Cell Metab 31(250–66):e9

    Google Scholar 

  198. Sugiura A, Andrejeva G, Voss K, Heintzman DR, Xu X, Madden MZ, Ye X, Beier KL, Chowdhury NU, Wolf MM, Young AC, Greenwood DL, Sewell AE, Shahi SK, Freedman SN, Cameron AM, Foerch P, Bourne T, Garcia-Canaveras JC, Karijolich J, Newcomb DC, Mangalam AK, Rabinowitz JD, Rathmell JC (2022) MTHFD2 is a metabolic checkpoint controlling effector and regulatory T cell fate and function. Immunity 55(65–81):e9

    Google Scholar 

  199. Kaufmann U, Kahlfuss S, Yang J, Ivanova E, Koralov SB, Feske S (2019) Calcium signaling controls pathogenic Th17 cell-mediated inflammation by regulating mitochondrial function. Cell Metab 29:1104–18.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Eric BJ, Yang H-Y, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen H-R, Luo W, Zeller K, Shimoda L, Suzanne G, Chi D, Pan F (2011) Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146:772–784

    Article  Google Scholar 

  201. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, Cheroutre H (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256–260

    Article  CAS  PubMed  Google Scholar 

  202. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL (2008) Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71

    Article  CAS  PubMed  Google Scholar 

  203. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld J-C, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109

    Article  CAS  PubMed  Google Scholar 

  204. Mascanfroni ID, Takenaka MC, Yeste A, Patel B, Wu Y, Kenison JE, Siddiqui S, Basso AS, Otterbein LE, Pardoll DM, Pan F, Priel A, Clish CB, Robson SC, Quintana FJ (2015) Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat Med 21:638–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Aaron V, Laura M, Jeffrey M, Scott M (2016) Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev Cell 36:540–549

    Article  Google Scholar 

  206. Purohit V, Wagner A, Yosef N, Kuchroo VK (2022) Systems-based approaches to study immunometabolism. Cellular & Molecular Immunology

  207. Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, Ha S, Nelson BN, Kelly SP, Wu L, Zheng Y, Longman RS, Rastinejad F, Devlin AS, Krout MR, Fischbach MA, Littman DR, Huh JR (2019) Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576:143–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Mary Collins for critical reading of and feedback for this manuscript. Because of the scope of this review, we apologize to investigators whose work and important contributions we could not highlight here. Some elements of the figures were adjusted from Servier Medical Art (http://smart.servier.com) as licensed under a Creative Commons Attribution License.

Funding

This work was supported by National Institutes of Health grants R01NS045937, R01NS30843, R01AI144166, P01AI073748, P01AI039671 and P01AI056299 (to VKK) and the Swiss National Science Foundation Postdoc Mobility Fellowship (to MS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay K. Kuchroo.

Ethics declarations

Competing interests

V.K.K. is cofounder of Celsius Therapeutics, Tizona Therapeutics, Larkspur Biosciences and Bicara Therapeutics. His interests are reviewed and managed by the Brigham and Women’s Hospital and Partners Healthcare in accordance with their conflict of interest policies.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Neuroimmune Interactions in Health and Disease - Guest Editors: David Hafler & Lauren Sansing

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiljar, M., Kuchroo, V.K. Metabolic regulation and function of T helper cells in neuroinflammation. Semin Immunopathol 44, 581–598 (2022). https://doi.org/10.1007/s00281-022-00959-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-022-00959-z

Keywords

Navigation