Skip to main content

Advertisement

Log in

The gut-joint axis in spondyloarthritis: immunological, microbial, and clinical insights

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The strong genetic and clinical overlaps between spondyloarthritis (SpA) and inflammatory bowel disease (IBD) have placed much needed focus on the gut-joint axis of inflammation in SpA, leading to three key hypotheses that attempt to unravel this complex relationship. The arthritogenic peptide hypothesis and the aberrant cellular trafficking hypothesis have been put forth to rationalize the manner by which the innate and adaptive immune systems cooperate and converge during SpA pathogenesis. The bacterial dysbiosis hypothesis discusses how changes in the microbiome lead to architectural and immunological consequences in SpA. These theories are not mutually exclusive, but can provide an explanation as to why subclinical gut inflammation may sometimes precede joint inflammation in SpA patients, thereby implying a causal relationship. Such investigations will be important in informing therapeutic decisions which may be common to both SpA and IBD. However, these hypotheses can also offer insights for a coincident inflammatory relationship between the gut and the joint, particularly when assessing the immunological players involved. Insights from understanding how these systems might affect the gut and joint differently will be equally imperative to address where the therapeutic differences lie between the two diseases. Collectively, this knowledge has practical implications in predicting the likelihood of IBD development in SpA or presence of coincident SpA-IBD, uncovering novel therapeutic targets, and redesigning currently approved treatments. It is evident that a multidisciplinary approach between the rheumatology and gastroenterology fields cannot be ignored, when it comes to the care of SpA patients at risk of IBD or vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Taurog JD, Chhabra A, Colbert RA (2016) Ankylosing spondylitis and axial spondyloarthritis. N Engl J Med 374:2563–2574. https://doi.org/10.1056/NEJMra1406182

    Article  PubMed  Google Scholar 

  2. Jacques P, Elewaut D (2008) Joint expedition: Linking gut inflammation to arthritis. Mucosal Immunol 1:364–371. https://doi.org/10.1038/mi.2008.24

    Article  CAS  PubMed  Google Scholar 

  3. Mielants H, De Vos M, Goemaere S et al (1991) Intestinal mucosal permeability in inflammatory rheumatic diseases. II. Role of disease. J Rheumatol 18:394–400

    CAS  PubMed  Google Scholar 

  4. Thjodleifsson B, Geirsson ÁJ, Björnsson S, Bjarnason I (2007) A common genetic background for inflammatory bowel disease and ankylosing spondylitis: A genealogic study in Iceland. Arthritis Rheum 56:2633–2639. https://doi.org/10.1002/art.22812

    Article  PubMed  Google Scholar 

  5. Bjarnason I, Helgason KO, Geirsson ÁJ et al (2003) Subclinical Intestinal Inflammation and Sacroiliac Changes in Relatives of Patients with Ankylosing Spondylitis. Gastroenterology 125:1598–1605. https://doi.org/10.1053/j.gastro.2003.08.035

    Article  PubMed  Google Scholar 

  6. Stoll ML, Punaro M, Patel AS (2011) Fecal calprotectin in children with the enthesitis-related arthritis subtype of juvenile idiopathic arthritis. J Rheumatol 38:2274–2275. https://doi.org/10.3899/jrheum.110508

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cortes A, Hadler J, Pointon JP et al (2013) Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 45:730–738. https://doi.org/10.1038/ng.2667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reveille JD (2012) Genetics of spondyloarthritis - Beyond the MHC. Nat Rev Rheumatol 8:296–304. https://doi.org/10.1038/nrrheum.2012.41

    Article  CAS  PubMed  Google Scholar 

  9. Ellinghaus D, Jostins L, Spain SL et al (2016) Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet 48:510–518. https://doi.org/10.1038/ng.3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gracey E, Dumas E, Yerushalmi M et al (2019) The ties that bind: skin, gut and spondyloarthritis. Curr Opin Rheumatol 31:62–69. https://doi.org/10.1097/BOR.0000000000000569

    Article  PubMed  Google Scholar 

  11. Speca S, Dubuquoy L (2017) Chronic bowel inflammation and inflammatory joint disease: Pathophysiology. Jt Bone Spine 84:417–420. https://doi.org/10.1016/j.jbspin.2016.12.016

    Article  Google Scholar 

  12. Rezaiemanesh A, Abdolmaleki M, Abdolmohammadi K et al (2018) Immune cells involved in the pathogenesis of ankylosing spondylitis. Biomed Pharmacother 100:198–204. https://doi.org/10.1016/j.biopha.2018.01.108

    Article  CAS  PubMed  Google Scholar 

  13. Annunziato F, Romagnani C, Romagnani S (2015) The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol 135:626–635. https://doi.org/10.1016/j.jaci.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  14. Bridgewood C, Watad A, Cuthbert RJ, McGonagle D (2018) Spondyloarthritis: new insights into clinical aspects, translational immunology and therapeutics. Curr Opin Rheumatol 30:526–532. https://doi.org/10.1097/BOR.0000000000000529

    Article  CAS  PubMed  Google Scholar 

  15. Lee SH, Kwon J e, Cho ML (2018) Immunological pathogenesis of inflammatory bowel disease. Intest Res 16:26–42. https://doi.org/10.5217/ir.2018.16.1.26

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brown MA, Kenna T, Wordsworth BP (2016) Genetics of ankylosing spondylitis - Insights into pathogenesis. Nat Rev Rheumatol 12:81–91. https://doi.org/10.1038/nrrheum.2015.133

    Article  CAS  PubMed  Google Scholar 

  17. Kruithof E, Baeten D, De Rycke L et al (2005) Synovial histopathology of psoriatic arthritis, both oligo- and polyarticular, resembles spondyloarthropathy more than it does rheumatoid arthritis. Arthritis Res Ther 7:R569–R580. https://doi.org/10.1186/ar1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Rycke L, Baeten D, Foell D et al (2005) Differential expression and response to anti-TNFα treatment of infiltrating versus resident tissue macrophage subsets in autoimmune arthritis. J Pathol 206:17–27. https://doi.org/10.1002/path.1758

    Article  CAS  PubMed  Google Scholar 

  19. Baeten D, Kruithof E, De Rycke L et al (2005) Infiltration of the synovial membrane with macrophage subsets and polymorphonuclear cells reflects global disease activity in spondyloarthropathy. Arthritis Res Ther 7. https://doi.org/10.1186/ar1501

  20. Baeten D, Møller HJ, Delanghe J et al (2004) Association of CD163+ Macrophages and Local Production of Soluble CD163 with Decreased Lymphocyte Activation in Spondylarthropathy Synovitis. Arthritis Rheum 50:1611–1623. https://doi.org/10.1002/art.20174

    Article  PubMed  Google Scholar 

  21. Baeten D, Demetter P, Cuvelier CA et al (2002) Macrophages expressing the scavenger receptor CD163: A link between immune alterations of the gut and synovial inflammaton in spondyloarthropathy. J Pathol 196:343–350. https://doi.org/10.1002/path.1044

    Article  CAS  PubMed  Google Scholar 

  22. van de Sande MG, Baeten DL (2016) Immunopathology of synovitis: From histology to molecular pathways. Rheumatol 55:599–606. https://doi.org/10.1093/rheumatology/kev330

    Article  CAS  Google Scholar 

  23. Demetter P, De Vos M, Van Huysse JA et al (2005) Colon mucosa of patients both with spondyloarthritis and Crohn’s disease is enriched with macrophages expressing the scavenger receptor CD163. Ann Rheum Dis 64:321–324. https://doi.org/10.1136/ard.2003.018382

    Article  CAS  PubMed  Google Scholar 

  24. Ciccia F, Alessandro R, Rizzo A et al (2014) Macrophage phenotype in the subclinical gut inflammation of patients with ankylosing spondylitis. Rheumatol 53:104–113. https://doi.org/10.1093/rheumatology/ket323

    Article  CAS  Google Scholar 

  25. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: In vivo veritas. J Clin Invest 122:787–795. https://doi.org/10.1172/JCI59643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakayama W, Jinnin M, Makino K et al (2012) CD163 expression is increased in the involved skin and sera of patients with systemic lupus erythematosus. Eur J Dermatol 22:512–517. https://doi.org/10.1684/ejd.2012.1756

    Article  CAS  PubMed  Google Scholar 

  27. Fabriek BO, Møller HJ, Vloet RPM et al (2007) Proteolytic shedding of the macrophage scavenger receptor CD163 in multiple sclerosis. J Neuroimmunol 187:179–186. https://doi.org/10.1016/j.jneuroim.2007.04.016

    Article  CAS  PubMed  Google Scholar 

  28. Stilund M, Reuschlein AK, Christensen T et al (2014) Soluble CD163 as a marker of macrophage activity in newly diagnosed patients with multiple sclerosis. PLoS One 9:e098588. https://doi.org/10.1371/journal.pone.0098588

    Article  CAS  Google Scholar 

  29. Heftdal LD, Loft AG, Hendricks O et al (2018) Divergent effects on macrophage biomarkers soluble CD163 and CD206 in axial spondyloarthritis. Scand J Clin Lab Invest 78:483–489. https://doi.org/10.1080/00365513.2018.1500704

    Article  CAS  PubMed  Google Scholar 

  30. Gracey E, Qaiyum Z, Almaghlouth I et al (2016) IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann Rheum Dis 75:2124–2132. https://doi.org/10.1136/annrheumdis-2015-208902

    Article  CAS  PubMed  Google Scholar 

  31. Pickert G, Neufert C, Leppkes M et al (2009) STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206:1465–1472. https://doi.org/10.1084/jem.20082683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee JS, Tato CM, Joyce-Shaikh B et al (2015) Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. Immunity 43:727–738. https://doi.org/10.1016/j.immuni.2015.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. König J, Wells J, Cani PD et al (2016) Human intestinal barrier function in health and disease. Clin Transl Gastroenterol 7:e54. https://doi.org/10.1038/ctg.2016.54

    Article  CAS  Google Scholar 

  34. Uhlig HH, Powrie F (2018) Translating Immunology into Therapeutic Concepts for Inflammatory Bowel Disease. Annu Rev Immunol 36:755–781. https://doi.org/10.1146/annurev-immunol-042617-053055

    Article  CAS  PubMed  Google Scholar 

  35. De Wilde K, Debusschere K, Beeckman S et al (2015) Integrating the pathogenesis of spondyloarthritis: gut and joint united? Curr Opin Rheumatol 27:189–196. https://doi.org/10.1097/BOR.0000000000000144

    Article  CAS  PubMed  Google Scholar 

  36. Fauny M, Moulin D, D’Amico F et al (2020) Paradoxical gastrointestinal effects of interleukin-17 blockers. Ann Rheum Dis Annrheumdis 2020:217927. https://doi.org/10.1136/annrheumdis-2020-217927

    Article  CAS  Google Scholar 

  37. McGonagle DG, McInnes IB, Kirkham BW et al (2019) The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: Recent advances and controversies. Ann Rheum Dis 78:1167–1178. https://doi.org/10.1136/annrheumdis-2019-215356

    Article  CAS  PubMed  Google Scholar 

  38. Inman RD, Sieper J (2016) Oxford Textbook of Axial Spondyloarthritis, 1st edn. Oxford University Press, New York, USA

    Book  Google Scholar 

  39. Chen S, Noordenbos T, Blijdorp I et al (2019) Histologic evidence that mast cells contribute to local tissue inflammation in peripheral spondyloarthritis by regulating interleukin-17A content. Rheumatol 58:617–627. https://doi.org/10.1093/rheumatology/key331

    Article  CAS  Google Scholar 

  40. Venken K, Elewaut D (2015) New immune cells in spondyloarthritis: Key players or innocent bystanders? Best Pract Res Clin Rheumatol 29:706–714. https://doi.org/10.1016/j.berh.2016.02.002

    Article  PubMed  Google Scholar 

  41. Ciccia F, Guggino G, Rizzo A et al (2015) Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann Rheum Dis 74:1739–1747. https://doi.org/10.1136/annrheumdis-2014-206323

    Article  CAS  PubMed  Google Scholar 

  42. Reinhardt A, Prinz I (2018) Whodunit? The contribution of interleukin (IL)-17/IL-22-producing γδ T cells, αβ T cells, and innate lymphoid cells to the pathogenesis of spondyloarthritis. Front Immunol 9:e00885. https://doi.org/10.3389/fimmu.2018.00885

    Article  CAS  Google Scholar 

  43. Leijten EFA, van Kempen TS, Boes M et al (2015) Brief report: enrichment of activated group 3 innate lymphoid cells in psoriatic arthritis synovial fluid. Arthritis Rheumatol (Hoboken, NJ) 67:2673–2678. https://doi.org/10.1002/art.39261

    Article  Google Scholar 

  44. Al-Mossawi MH, Chen L, Fang H et al (2017) Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis. Nat Commun 8. https://doi.org/10.1038/s41467-017-01771-2

  45. Appel H, Maier R, Wu P et al (2011) Analysis of IL-17+cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res Ther 13:10.1186/ar3370

    Article  Google Scholar 

  46. Cuthbert RJ, Fragkakis EM, Dunsmuir R et al (2017) Brief Report: Group 3 Innate Lymphoid Cells in Human Enthesis. Arthritis Rheum 69:1816–1822. https://doi.org/10.1002/art.40150

    Article  CAS  Google Scholar 

  47. Blijdorp ICJ, Menegatti S, Van Mens LJJ et al (2018) IL-22- and GM-CSF-expressing but not IL-17A-expressing group 3 innate lymphoid cells are expanded in the inflamed spondyloarthritis joint. Arthritis Rheum 71:392–402. https://doi.org/10.1002/art.40736

    Article  CAS  Google Scholar 

  48. Takayama T, Kamada N, Chinen H et al (2010) Imbalance of NKp44+NKp46- and NKp44 -NKp46+ natural killer cells in the intestinal mucosa of patients with Crohn’s disease. Gastroenterology 139:882–892.e3. https://doi.org/10.1053/j.gastro.2010.05.040

    Article  CAS  PubMed  Google Scholar 

  49. Geremia A, Arancibia-Cárcamo CV, Fleming MPP et al (2011) IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 208:1127–1133. https://doi.org/10.1084/jem.20101712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ranganathan V, Gracey E, Brown MA et al (2017) Pathogenesis of ankylosing spondylitis-recent advances and future directions. Nat Rev Rheumatol 13:359–367. https://doi.org/10.1038/nrrheum.2017.56

    Article  CAS  PubMed  Google Scholar 

  51. Veale DJ, Fearon U (2018) The pathogenesis of psoriatic arthritis. Lancet 391:2273–2284. https://doi.org/10.1016/S0140-6736(18)30830-4

    Article  CAS  PubMed  Google Scholar 

  52. Gracey E, Yao Y, Green B et al (2016) Sexual Dimorphism in the Th17 Signature of Ankylosing Spondylitis. Arthritis Rheum 68:679–689. https://doi.org/10.1002/art.39464

    Article  CAS  Google Scholar 

  53. Gaston JSH, Jadon DR (2017) Th17 cell responses in spondyloarthritis. Best Pract Res Clin Rheumatol 31:777–796. https://doi.org/10.1016/j.berh.2018.07.010

    Article  CAS  PubMed  Google Scholar 

  54. Smith JA, Colbert RA (2014) The interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheum 66:231–241. https://doi.org/10.1002/art.38291

    Article  CAS  Google Scholar 

  55. Jiang W, Su J, Zhang X et al (2014) Elevated levels of Th17 cells and Th17-related cytokines are associated with disease activity in patients with inflammatory bowel disease. Inflamm Res 63:943–950. https://doi.org/10.1007/s00011-014-0768-7

    Article  CAS  PubMed  Google Scholar 

  56. Menon B, Gullick NJ, Walter GJ et al (2014) Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheum 66:1272–1281. https://doi.org/10.1002/art.38376

    Article  CAS  Google Scholar 

  57. Jandus C, Bioley G, Rivals JP et al (2008) Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides. Arthritis Rheum 58:2307–2317. https://doi.org/10.1002/art.23655

    Article  PubMed  Google Scholar 

  58. Wang C, Liao Q, Hu Y, Zhong D (2015) T lymphocyte subset imbalances in patients contribute to ankylosing spondylitis. Exp Ther Med 9:250–256. https://doi.org/10.3892/etm.2014.2046

    Article  CAS  PubMed  Google Scholar 

  59. Steel KJA, Srenathan U, Ridley M et al (2020) Polyfunctional, Proinflammatory, Tissue-Resident Memory Phenotype and Function of Synovial Interleukin-17A+CD8+ T Cells in Psoriatic Arthritis. Arthritis Rheum 72:435–447. https://doi.org/10.1002/art.41156

    Article  CAS  Google Scholar 

  60. Debusschere K, Lories RJ, Elewaut D (2016) MAIT cells: Not just another brick in the wall. Ann Rheum Dis 75:2057–2059. https://doi.org/10.1136/annrheumdis-2016-209695

    Article  CAS  PubMed  Google Scholar 

  61. Mortier C, Govindarajan S, Venken K, Elewaut D (2018) It takes “guts” to cause joint inflammation: Role of innate-like T cells. Front Immunol 9. https://doi.org/10.3389/fimmu.2018.01489

  62. Papotto PH, Reinhardt A, Prinz I, Silva-Santos B (2018) Innately versatile: γδ17 T cells in inflammatory and autoimmune diseases. J Autoimmun 87:26–37. https://doi.org/10.1016/j.jaut.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  63. Cuthbert RJ, Watad A, Fragkakis EM et al (2019) Evidence that tissue resident human enthesis γδT-cells can produce IL-17A independently of IL-23R transcript expression. Ann Rheum Dis 78:1559–1565. https://doi.org/10.1136/annrheumdis-2019-215210

    Article  CAS  PubMed  Google Scholar 

  64. Gravallese EM, Schett G (2018) Effects of the IL-23–IL-17 pathway on bone in spondyloarthritis. Nat Rev Rheumatol 14:631–640. https://doi.org/10.1038/s41584-018-0091-8

    Article  CAS  PubMed  Google Scholar 

  65. Berlinberg A, Kuhn KA (2020) Barrier lymphocytes in spondyloarthritis. Curr Opin Rheumatol 1. https://doi.org/10.1097/bor.0000000000000716

  66. Jacques P, Venken K, Van Beneden K et al (2010) Invariant Natural Killer T Cells Are Natural Regulators of Murine Spondylarthritis. Arthritis Rheum 62:988–999. https://doi.org/10.1002/art.27324

    Article  CAS  PubMed  Google Scholar 

  67. Asquith M, Elewaut D, Lin P, Rosenbaum JT (2014) The role of the gut and microbes in the pathogenesis of spondyloarthritis. Best Pract Res Clin Rheumatol 28:687–702. https://doi.org/10.1016/j.berh.2014.10.018

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schittenhelm RB, Sian TCCLK, Wilmann PG et al (2015) Revisiting the arthritogenic peptide theory: Quantitative not qualitative changes in the peptide repertoire of HLA-B27 allotypes. Arthritis Rheum 67:702–713. https://doi.org/10.1002/art.38963

    Article  CAS  Google Scholar 

  69. Hermann E, Meyer zum Büschenfelde KH, Fleischer B, Yu DTY (1993) HLA-B27-restricted CD8 T cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis. Lancet 342:646–650. https://doi.org/10.1016/0140-6736(93)91760-J

    Article  CAS  PubMed  Google Scholar 

  70. Dulphy N, Peyrat M-A, Tieng V et al (1999) Common Intra-Articular T Cell Expansions in Patients with Reactive Arthritis: Identical β-Chain Junctional Sequences and Cytotoxicity Toward HLA-B27. J Immunol 162

  71. Hermann E, Fleischer B, Mayet WJ et al (1989) Response of synovial fluid T cell clones to Yersinia enterocolitica antigens in patients with reactive Yersinia arthritis. Clin Exp Immunol 75:365–370

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lahesmaa R, Yssel H, Batsford S et al (1992) Yersinia enterocolitica activates a T helper type 1-like T cell subset in reactive arthritis. J Immunol 148:3079–3085

    CAS  PubMed  Google Scholar 

  73. May E, Märker-Hermann E, Wittig BM et al (2000) Identical T-cell expansions in the colon mucosa and the synovium of a patient with enterogenic spondyloarthropathy. Gastroenterology 119:1745–1755. https://doi.org/10.1053/gast.2000.20173

    Article  CAS  PubMed  Google Scholar 

  74. Faham M, Carlton V, Moorhead M et al (2017) Discovery of T Cell Receptor β Motifs Specific to HLA–B27–Positive Ankylosing Spondylitis by Deep Repertoire Sequence Analysis. Arthritis Rheum 69:774–784. https://doi.org/10.1002/art.40028

    Article  CAS  Google Scholar 

  75. Salmi M, Jalkanen S (2001) Human Leukocyte Subpopulations from Inflamed Gut Bind to Joint Vasculature Using Distinct Sets of Adhesion Molecules. J Immunol 166:4650–4657. https://doi.org/10.4049/jimmunol.166.7.4650

    Article  CAS  PubMed  Google Scholar 

  76. Ley K, Rivera-Nieves J, Sandborn WJ, Shattil S (2016) Integrin-based therapeutics: Biological basis, clinical use and new drugs. Nat Rev Drug Discov 15:173–183. https://doi.org/10.1038/nrd.2015.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Qaiyum Z, Gracey E, Yao YC, Inman RD (2019) Integrin and transcriptomic profiles identify a distinctive synovial CD8+ T cell subpopulation in spondyloarthritis. Ann Rheum Dis 78:1566–1575. https://doi.org/10.1136/annrheumdis-2019-215349

    Article  CAS  PubMed  Google Scholar 

  78. Wong MT, Ong DEH, Lim FSH et al (2016) A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures. Immunity 45:442–456. https://doi.org/10.1016/j.immuni.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  79. Fonseca R, Beura LK, Quarnstrom CF et al (2020) Developmental plasticity allows outside-in immune responses by resident memory T cells. Nat Immunol 21:412–421. https://doi.org/10.1038/s41590-020-0607-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gratz IK, Campbell DJ (2020) Resident memory T cells show that it is never too late to change your ways. Nat Immunol 21:359–360. https://doi.org/10.1038/s41590-020-0637-1

    Article  CAS  PubMed  Google Scholar 

  81. Brakenhoff LKPM, van der Heijde DM, Hommes DW et al (2010) The joint–gut axis in inflammatory bowel diseases. J Crohn's Colitis 4:257–268. https://doi.org/10.1016/j.crohns.2009.11.005

    Article  Google Scholar 

  82. Do J, Kim S, Keslar K et al (2017) γδ T Cells Coexpressing Gut Homing α4β7 and αE Integrins Define a Novel Subset Promoting Intestinal Inflammation. J Immunol 198:908–915. https://doi.org/10.4049/jimmunol.1601060

    Article  CAS  PubMed  Google Scholar 

  83. Sun X, Shibata K, Yamada H et al (2013) CD30L/CD30 is critical for maintenance of IL-17A-producing γδ T cells bearing Vγ6 in mucosa-associated tissues in mice. Mucosal Immunol 6:1191–1201. https://doi.org/10.1038/mi.2013.18

    Article  CAS  PubMed  Google Scholar 

  84. Elewaut D, De Keyser F, Van Den Bosch F et al (1998) Enrichment of T cells carrying β7 integrins in inflamed synovial tissue from patients with early spondyloarthropathy, compared to rheumatoid arthritis. J Rheumatol 25:1932–1937

    CAS  PubMed  Google Scholar 

  85. Neerinckx B, Elewaut D, Lories RJ (2015) Spreading spondyloarthritis: Are ILCs cytokine shuttles from base camp gut? Ann Rheum Dis 74:1633–1635. https://doi.org/10.1136/annrheumdis-2015-207735

    Article  CAS  PubMed  Google Scholar 

  86. Berthelot JM, Claudepierre P (2016) Trafficking of antigens from gut to sacroiliac joints and spine in reactive arthritis and spondyloarthropathies: Mainly through lymphatics? Jt Bone Spine 83:485–490. https://doi.org/10.1016/j.jbspin.2015.10.015

    Article  CAS  Google Scholar 

  87. Kempsell KE, Cox CJ, McColm AA et al (2001) Detection of Mycobacterium tuberculosis group organisms in human and mouse joint tissue by reverse transcriptase PCR: Prevalence in diseased synovial tissue suggests lack of specific association with rheumatoid arthritis. Infect Immun 69:1821–1831. https://doi.org/10.1128/IAI.69.3.1821-1831.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Demetter P, Van Huysse JA, De Keyser F et al (2002) Increase in lymphoid follicles and leukocyte adhesion molecules emphasizes a role for the gut in spondyloarthropathy pathogenesis. J Pathol 198:517–522. https://doi.org/10.1002/path.1235

    Article  CAS  PubMed  Google Scholar 

  89. Nishigaki E, Abe T, Yokoyama Y et al (2014) The detection of intraoperative bacterial translocation in the mesenteric lymph nodes is useful in predicting patients at high risk for postoperative infectious complications after esophagectomy. Ann Surg 259:477–484. https://doi.org/10.1097/SLA.0b013e31828e39e8

    Article  PubMed  Google Scholar 

  90. Pedersen SJ, Maksymowych WP (2019) The Pathogenesis of Ankylosing Spondylitis: an Update. Curr Rheumatol Rep 21:1–10. https://doi.org/10.1007/s11926-019-0856-3

    Article  CAS  Google Scholar 

  91. Zhou C, Zhao H, Xiao X y et al (2020) Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. J Autoimmun 107:e102360. https://doi.org/10.1016/j.jaut.2019.102360

    Article  CAS  Google Scholar 

  92. Yin J, Sternes PR, Wang M et al (2020) Shotgun metagenomics reveals an enrichment of potentially cross-reactive bacterial epitopes in ankylosing spondylitis patients, as well as the effects of TNFi therapy upon microbiome composition. Ann Rheum Dis 79:132–140. https://doi.org/10.1136/annrheumdis-2019-215763

    Article  CAS  PubMed  Google Scholar 

  93. Tito RY, Cypers H, Joossens M et al (2017) Brief Report: Dialister as a Microbial Marker of Disease Activity in Spondyloarthritis. Arthritis Rheum 69:114–121. https://doi.org/10.1002/art.39802

    Article  CAS  Google Scholar 

  94. Breban M, Tap J, Leboime A et al (2017) Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis 76:1614–1622. https://doi.org/10.1136/annrheumdis-2016-211064

    Article  CAS  PubMed  Google Scholar 

  95. Asquith M, Sternes PR, Costello ME et al (2019) HLA Alleles Associated With Risk of Ankylosing Spondylitis and Rheumatoid Arthritis Influence the Gut Microbiome. Arthritis Rheum 71:1642–1650. https://doi.org/10.1002/art.40917

    Article  CAS  Google Scholar 

  96. Asquith M, Davin S, Stauffer P et al (2017) Intestinal Metabolites Are Profoundly Altered in the Context of HLA–B27 Expression and Functionally Modulate Disease in a Rat Model of Spondyloarthritis. Arthritis Rheum 69:1984–1995. https://doi.org/10.1002/art.40183

    Article  CAS  Google Scholar 

  97. Asquith MJ, Stauffer P, Davin S et al (2016) Perturbed Mucosal Immunity and Dysbiosis Accompany Clinical Disease in a Rat Model of Spondyloarthritis. Arthritis Rheum 68:2151–2162. https://doi.org/10.1002/art.39681

    Article  CAS  Google Scholar 

  98. Rizzo A, Guggino G, Ferrante A, Ciccia F (2018) Role of subclinical gut inflammation in the pathogenesis of spondyloarthritis. Front Med 5:63. https://doi.org/10.3389/fmed.2018.00063

    Article  Google Scholar 

  99. Tajik N, Frech M, Schulz O et al (2020) Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat Commun 11:7. https://doi.org/10.1038/s41467-020-15831-7

    Article  CAS  Google Scholar 

  100. Ciccia F, Guggino G, Rizzo A et al (2017) Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann Rheum Dis 76:1123–1132. https://doi.org/10.1136/annrheumdis-2016-210000

    Article  CAS  PubMed  Google Scholar 

  101. Ciccia F, Rizzo A, Triolo G (2016) Subclinical gut inflammation in ankylosing spondylitis. Curr Opin Rheumatol 28:89–96. https://doi.org/10.1097/BOR.0000000000000239

    Article  CAS  PubMed  Google Scholar 

  102. Ansalone C, Utriainen L, Milling S, Goodyear CS (2017) Role of Gut Inflammation in Altering the Monocyte Compartment and Its Osteoclastogenic Potential in HLA–B27–Transgenic Rats. Arthritis Rheum 69:1807–1815. https://doi.org/10.1002/art.40154

    Article  CAS  Google Scholar 

  103. Stolwijk C, Essers I, Van Tubergen A et al (2015) The epidemiology of extra-articular manifestations in ankylosing spondylitis: A population-based matched cohort study. Ann Rheum Dis 74:1373–1378. https://doi.org/10.1136/annrheumdis-2014-205253

    Article  PubMed  Google Scholar 

  104. Essers I, Ramiro S, Stolwijk C et al (2014) Characteristics associated with the presence and development of extra-articular manifestations in ankylosing spondylitis: 12-year results from OASIS. Rheumatol 54:633–640. https://doi.org/10.1093/rheumatology/keu388

    Article  CAS  Google Scholar 

  105. Van Praet L, Jans L, Carron P et al (2014) Degree of bone marrow oedema in sacroiliac joints of patients with axial spondyloarthritis is linked to gut inflammation and male sex: Results from the GIANT cohort. Ann Rheum Dis 73:1186–1189. https://doi.org/10.1136/annrheumdis-2013-203854

    Article  PubMed  Google Scholar 

  106. Fragoulis GE, Liava C, Daoussis D et al (2019) Inflammatory bowel diseases and spondyloarthropathies: From pathogenesis to treatment. World J Gastroenterol 25:2162–2176. https://doi.org/10.3748/wjg.v25.i18.2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chan J, Sari I, Salonen D et al (2018) Prevalence of Sacroiliitis in Inflammatory Bowel Disease Using a Standardized Computed Tomography Scoring System. Arthritis Care Res 70:807–810. https://doi.org/10.1002/acr.23323

    Article  Google Scholar 

  108. Kelly OB, Li N, Smith M et al (2019) The prevalence and clinical associations of subclinical sacroiliitis in inflammatory bowel disease. Inflamm Bowel Dis 25:1066–1071. https://doi.org/10.1093/ibd/izy339

    Article  PubMed  Google Scholar 

  109. Turina MC, Sieper J, Yeremenko N et al (2014) Calprotectin serum level is an independent marker for radiographic spinal progression in axial spondyloarthritis. Ann Rheum Dis 73:1746–1748. https://doi.org/10.1136/annrheumdis-2014-205506

    Article  PubMed  Google Scholar 

  110. Østgård R, Deleuran B, Dam M et al (2018) Faecal calprotectin detects subclinical bowel inflammation and may predict treatment response in spondyloarthritis. Scand J Rheumatol 47:48–55. https://doi.org/10.1080/03009742.2017.1299216

    Article  CAS  PubMed  Google Scholar 

  111. Olofsson T, Lindqvist E, Mogard E et al (2019) Elevated faecal calprotectin is linked to worse disease status in axial spondyloarthritis: Results from the SPARTAKUS cohort. Rheumatol 58:1176–1187. https://doi.org/10.1093/rheumatology/key427

    Article  CAS  Google Scholar 

  112. Klingberg E, Strid H, Ståhl A et al (2017) A longitudinal study of fecal calprotectin and the development of inflammatory bowel disease in ankylosing spondylitis. Arthritis Res Ther 19:2. https://doi.org/10.1186/s13075-017-1223-2

    Article  CAS  Google Scholar 

  113. Veys EM, Van Laere M (1973) Serum IgG, IgM, and IgA levels in ankylosing spondylitis. Ann Rheum Dis 32:493–496. https://doi.org/10.1136/ard.32.6.493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cristea D, Trandafir M, Bojinca V et al (2019) Usefulness of complex bacteriological and serological analysis in patients with spondyloarthritis. Exp Ther Med 17:3465. https://doi.org/10.3892/etm.2019.7336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sieper J (2016) New treatment targets for axial spondyloarthritis. Rheumatol 55:ii38–ii42. https://doi.org/10.1093/rheumatology/kew349

    Article  Google Scholar 

  116. Wallis D, Asaduzzaman A, Weisman M et al (2013) Elevated serum anti-flagellin antibodies implicate subclinical bowel inflammation in ankylosing spondylitis: An observational study. Arthritis Res Ther 15:R166. https://doi.org/10.1186/ar4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Aydin SZ, Atagunduz P, Temel M et al (2008) Anti-Saccharomyces cerevisiae antibodies (ASCA) in spondyloarthropathies: A reassessment. Rheumatology 47:142–144. https://doi.org/10.1093/rheumatology/kem324

    Article  CAS  PubMed  Google Scholar 

  118. Viladomiu M, Kivolowitz C, Abdulhamid A et al (2017) IgA-coated E. Coli enriched in Crohn’s disease spondyloarthritis promote TH17-dependent inflammation. Sci Transl Med 9:9655. https://doi.org/10.1126/scitranslmed.aaf9655

    Article  CAS  Google Scholar 

  119. Van den Brande JMH, Braat H, Van den Brink GR et al (2003) Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology 124:1774–1785. https://doi.org/10.1016/S0016-5085(03)00382-2

    Article  CAS  PubMed  Google Scholar 

  120. Bazin T, Hooks KB, Barnetche T et al (2018) Microbiota Composition May Predict Anti-TNF Alpha Response in Spondyloarthritis Patients: An Exploratory Study. Sci Rep 8:4. https://doi.org/10.1038/s41598-018-23571-4

    Article  CAS  Google Scholar 

  121. Kruglov AA, Grivennikov SI, Kuprash DV et al (2013) Nonredundant function of soluble ltα3 produced by innate lymphoid cells in intestinal homeostasis. Science 342:1243–1246. https://doi.org/10.1126/science.1243364

    Article  CAS  PubMed  Google Scholar 

  122. Feagan BG, Panés J, Ferrante M et al (2018) Risankizumab in patients with moderate to severe Crohn’s disease: an open-label extension study. Lancet Gastroenterol Hepatol 3:671–680. https://doi.org/10.1016/S2468-1253(18)30233-4

    Article  PubMed  Google Scholar 

  123. Colombel JF, Sendid B, Jouault T, Poulain D (2013) Secukinumab failure in crohn’s disease: The yeast connection? Gut 62:800–801. https://doi.org/10.1136/gutjnl-2012-304154

    Article  CAS  PubMed  Google Scholar 

  124. Schreiber S, Colombel JF, Feagan BG et al (2019) Incidence rates of inflammatory bowel disease in patients with psoriasis, psoriatic arthritis and ankylosing spondylitis treated with secukinumab: A retrospective analysis of pooled data from 21 clinical trials. Ann Rheum Dis 78:473–479. https://doi.org/10.1136/annrheumdis-2018-214273

    Article  CAS  PubMed  Google Scholar 

  125. Lozano MJF, Giménez RS, Fernández MC (2018) Emergence of inflammatory bowel disease during treatment with secukinumab. J Crohn's Colitis 12:1131–1133. https://doi.org/10.1093/ecco-jcc/jjy063

    Article  Google Scholar 

  126. van Tok MN, Na S, Lao CR et al (2018) The initiation, but not the persistence, of experimental spondyloarthritis is dependent on interleukin-23 signaling. Front Immunol 9:e01550. https://doi.org/10.3389/fimmu.2018.01550

    Article  CAS  Google Scholar 

  127. Manasson J, Wallach DS, Guggino G et al (2020) Interleukin-17 Inhibition in Spondyloarthritis Is Associated With Subclinical Gut Microbiome Perturbations and a Distinctive Interleukin-25–Driven Intestinal Inflammation. Arthritis Rheum 72:645–657. https://doi.org/10.1002/art.41169

    Article  CAS  Google Scholar 

  128. O’Shea JJ, Schwartz DM, Villarino AV et al (2015) The JAK-STAT Pathway: Impact on Human Disease and Therapeutic Intervention. Annu Rev Med 66:311–328. https://doi.org/10.1146/annurev-med-051113-024537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sandborn WJ, Ghosh S, Panes J et al (2014) A phase 2 study of Tofacitinib, an oral janus kinase inhibitor, inpatients with crohn’s disease. Clin Gastroenterol Hepatol 12. https://doi.org/10.1016/j.cgh.2014.01.029

  130. Van Der Heijde D, Deodhar A, Wei JC et al (2017) Tofacitinib in patients with ankylosing spondylitis: A phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann Rheum Dis 76:1340–1347. https://doi.org/10.1136/annrheumdis-2016-210322

    Article  CAS  PubMed  Google Scholar 

  131. Vermeire S, Schreiber S, Petryka R et al (2017) Clinical remission in patients with moderate-to-severe Crohn’s disease treated with filgotinib (the FITZROY study): results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet 389:266–275. https://doi.org/10.1016/S0140-6736(16)32537-5

    Article  CAS  PubMed  Google Scholar 

  132. Sandborn WJ, Feagan BG, Loftus EV et al (2020) Efficacy and Safety of Upadacitinib in a Randomized Trial of Patients With Crohn’s Disease. Gastroenterology 158:2123–2138.e8. https://doi.org/10.1053/j.gastro.2020.01.047

    Article  CAS  PubMed  Google Scholar 

  133. van der Heijde D, Baraliakos X, Gensler LS et al (2018) Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active ankylosing spondylitis (TORTUGA): results from a randomised, placebo-controlled, phase 2 trial. Lancet 392:2378–2387. https://doi.org/10.1016/S0140-6736(18)32463-2

    Article  PubMed  Google Scholar 

  134. van der Heijde D, Song IH, Pangan AL et al (2019) Efficacy and safety of upadacitinib in patients with active ankylosing spondylitis (SELECT-AXIS 1): a multicentre, randomised, double-blind, placebo-controlled, phase 2/3 trial. Lancet 394:2108–2117. https://doi.org/10.1016/S0140-6736(19)32534-6

    Article  PubMed  Google Scholar 

  135. Targan SR, Feagan BG, Fedorak RN et al (2007) Natalizumab for the Treatment of Active Crohn’s Disease: Results of the ENCORE Trial. Gastroenterology 132:1672–1683. https://doi.org/10.1053/j.gastro.2007.03.024

    Article  CAS  PubMed  Google Scholar 

  136. Sandborn WJ, Feagan BG, Rutgeerts P et al (2013) Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med 369:711–721. https://doi.org/10.1056/NEJMoa1215739

    Article  CAS  PubMed  Google Scholar 

  137. Ciccia F, Rizzo A, Guggino G et al (2016) Clinical efficacy of α4 integrin block with natalizumab in ankylosing spondylitis. Ann Rheum Dis 75:2053–2054. https://doi.org/10.1136/annrheumdis-2016-209749

    Article  PubMed  Google Scholar 

  138. Varkas G, Thevissen K, De Brabanter G et al (2017) An induction or flare of arthritis and/or sacroiliitis by vedolizumab in inflammatory bowel disease: A case series. Ann Rheum Dis 76:878–881. https://doi.org/10.1136/annrheumdis-2016-210233

    Article  CAS  PubMed  Google Scholar 

  139. Dubash S, Marianayagam T, Tinazzi I et al (2019) Emergence of severe spondyloarthropathy-related entheseal pathology following successful vedolizumab therapy for inflammatory bowel disease. Rheumatol 58:963–968. https://doi.org/10.1093/rheumatology/key267

    Article  CAS  Google Scholar 

  140. Orlando A, Orlando R, Ciccia F et al (2017) Clinical benefit of vedolizumab on articular manifestations in patients with active spondyloarthritis associated with inflammatory bowel disease. Ann Rheum Dis 76:e31–e31. https://doi.org/10.1136/annrheumdis-2016-211011

    Article  PubMed  Google Scholar 

  141. Varkas G, Van Den Bosch F, Elewaut D (2017) Response to: “Clinical benefit of vedolizumab on articular manifestations in patients with active spondyloarthritis associated with inflammatory bowel disease” by Orlando et al. Ann Rheum Dis 76:211045. https://doi.org/10.1136/annrheumdis-2016-211045

    Article  Google Scholar 

  142. Feagan BG, Sandborn WJ, Colombel JF et al (2019) Incidence of Arthritis/Arthralgia in Inflammatory Bowel Disease with Long-term Vedolizumab Treatment: Post hoc analyses of the Gemini trials. J Crohn's Colitis 13:50–57. https://doi.org/10.1093/ecco-jcc/jjy125

    Article  Google Scholar 

  143. Fischer A, Zundler S, Atreya R et al (2016) Differential effects of α4β7 and GPR15 on homing of effector and regulatory T cells from patients with UC to the inflamed gut in vivo. Gut 65:1642–1664. https://doi.org/10.1136/gutjnl-2015-310022

    Article  CAS  PubMed  Google Scholar 

  144. Appel H, Wu P, Scheer R et al (2011) Synovial and peripheral blood CD4+FoxP3+ T cells in spondyloarthritis. J Rheumatol 38:2445–2451. https://doi.org/10.3899/jrheum.110377

    Article  CAS  PubMed  Google Scholar 

  145. Gracey E, Vereecke L, McGovern D et al (2020) Revisiting the gut–joint axis: links between gut inflammation and spondyloarthritis. Nat Rev Rheumatol 16:415–433

    Article  PubMed  Google Scholar 

Download references

Funding

Grant support: Canadian Institutes of Health Research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Inman.

Ethics declarations

Conflict of interest

Acting as consultant for Abbvie, Janssen, Lilly, Novartis.

Additional information

This article is a contribution to the special issue on: Spondyloarthritis - Guest Editors: Robert Inman & Nigil Haroon

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qaiyum, Z., Lim, M. & Inman, R.D. The gut-joint axis in spondyloarthritis: immunological, microbial, and clinical insights. Semin Immunopathol 43, 173–192 (2021). https://doi.org/10.1007/s00281-021-00845-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-021-00845-0

Keywords

Navigation