Skip to main content

Advertisement

Log in

Cardiovascular toxicity of breast cancer treatment: an update

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Novel chemotherapeutic agents have marked a new era in oncology during the past decade, prolonging significantly the overall survival of breast cancer patients. Nevertheless, contemporary antineoplastic treatments can frequently cause adverse cardiovascular side effects. Common manifestations of chemotherapy-induced cardiotoxicity include cardiomyopathy, ischemia, conduction disturbances, hypertension and thromboembolic events, while the type of the treatment regimen administered crucially determines clinical outcome. The aim of this literature review is to analyze the incidence and the underlying mechanisms of cardiovascular toxicity caused by agents approved for breast cancer, as well as to describe ways of monitoring and treating the cardiotoxic effects in breast cancer patients. Moreover, our work intends to provide an easy-to-grasp synopsis of recent and clinically meaningful advances in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas M, Suter MSE (2013) Cancer drugs and the heart: importance and management. Eur Hear J 34(15):1102–1111

    Article  Google Scholar 

  2. Ewer MS, Suter TM, Lenihan DJ et al (2014) Cardiovascular events among 1090 cancer patients treated with sunitinib, interferon, or placebo: a comprehensive adjudicated database analysis demonstrating clinically meaningful reversibility of cardiac events. Eur J Cancer 50:2162–2170. https://doi.org/10.1016/j.ejca.2014.05.013

    Article  CAS  PubMed  Google Scholar 

  3. ESC guidelines—cancer treatments & cardiovascular toxicity (2016 ESC position paper). https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/cancer-treatments-cardiovascular-toxicity-2016-position-paper. Accessed 3 July 2020

  4. Cardinale D, Colombo A, Bacchiani G et al (2015) Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131:1981–1988. https://doi.org/10.1161/CIRCULATIONAHA.114.013777

    Article  CAS  PubMed  Google Scholar 

  5. Volkova M, Russell R (2012) Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev 7:214–220. https://doi.org/10.2174/157340311799960645

    Article  Google Scholar 

  6. Fernandez SF, Basra M, Canty JM (2011) Takotsubo cardiomyopathy following initial chemotherapy presenting with syncope and cardiogenic shock—a case report and literature review. J Clinic Experiment Cardiol 2:2. https://doi.org/10.4172/2155-9880.1000124

    Article  Google Scholar 

  7. MM H, SS L, J C et al (1985) Doxorubicin-induced congestive heart failure in adults. Cancer.https://doi.org/10.1002/1097-0142(19850915)56:6<1361::AID-CNCR2820560624>3.0.CO;2-S

  8. Groarke JD, Nohria A (2015) Editorial: Anthracycline cardiotoxicity a new paradigm for an old classic. Circulation 131:1946–1949

    Article  PubMed  Google Scholar 

  9. Corremans R, Adão R, De Keulenaer GW et al (2019) Update on pathophysiology and preventive strategies of anthracycline-induced cardiotoxicity. Clin Exp Pharmacol Physiol 46:204–215

    Article  CAS  PubMed  Google Scholar 

  10. Narayan HK, Finkelman B, French B et al (2017) Detailed echocardiographic phenotyping in breast cancer patients: associations with ejection fraction decline, recovery, and heart failure symptoms over 3 years of follow-up. Circulation 135:1397–1412. https://doi.org/10.1161/CIRCULATIONAHA.116.023463

    Article  PubMed  PubMed Central  Google Scholar 

  11. Serrano JM, González I, Del Castillo S et al (2015) Diastolic dysfunction following anthracycline-based chemotherapy in breast cancer patients: incidence and predictors. Oncologist 20:864–872. https://doi.org/10.1634/theoncologist.2014-0500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arbuck SG, Strauss H, Rowinsky E, Christian M, Suffness M, Adams J, Oakes M, McGuire W, Reed E, Gibbs H et al (1993) A reassessment of cardiac toxicity associated with taxol—PubMed. J Natl Cancer Inst Monogr (15):117–130

  13. Rowinsky EK, McGuire WP, Guarnieri T et al (1991) Cardiac disturbances during the administration of taxol. J Clin Oncol 9:1704–1712. https://doi.org/10.1200/JCO.1991.9.9.1704

    Article  CAS  PubMed  Google Scholar 

  14. Madeddu C, Deidda M, Piras A et al (2016) Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy. J Cardiovasc Med 17:S12–S18. https://doi.org/10.2459/JCM.0000000000000376

    Article  CAS  Google Scholar 

  15. Castel M, Despas F, Modesto A et al (2013) Effets indésirables cardiaques des chimiothérapies. Press Medicale 42:26–39

    Article  Google Scholar 

  16. Curigliano G, 1 DCTSGPE de AMTSCCAGCCFREGWG (2012) Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines—PubMed. https://pubmed.ncbi.nlm.nih.gov/22997448/. Accessed 3 Jul 2020

  17. Polk A, Vistisen K, Vaage-Nilsen M, Nielsen DL (2014) A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol 15:47. https://doi.org/10.1186/2050-6511-15-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL (2013) Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev 39:974–984

    Article  CAS  PubMed  Google Scholar 

  19. Chong JH, Ghosh AK (2019) Coronary artery vasospasm induced by 5-fluorouracil: proposed mechanisms, existing management options and future directions. Interv Cardiol Rev 14:89–94. https://doi.org/10.15420/icr.2019.12

    Article  Google Scholar 

  20. Polk A, Shahmarvand N, Vistisen K et al (2016) Incidence and risk factors for capecitabine-induced symptomatic cardiotoxicity: a retrospective study of 452 consecutive patients with metastatic breast cancer. BMJ Open. https://doi.org/10.1136/bmjopen-2016-012798

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kosmas C, Kallistratos MS, Kopterides P et al (2008) Cardiotoxicity of fluoropyrimidines in different schedules of administration: a prospective study. J Cancer Res Clin Oncol 134:75–82. https://doi.org/10.1007/s00432-007-0250-9

    Article  CAS  PubMed  Google Scholar 

  22. Sara JD, Kaur J, Khodadadi R et al (2018) 5-fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol 10:1758835918780140. https://doi.org/10.1177/1758835918780140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lapeyre-Mestre M, Gregoire N, Bugat R, Montastruc J-L (2004) Vinorelbine-related cardiac events: a meta-analysis of randomized clinical trials. Fundam Clin Pharmacol 18:97–105. https://doi.org/10.1046/j.0767-3981.2003.00215.x

    Article  CAS  PubMed  Google Scholar 

  24. Lorusso V, Giota F, Bordonaro R et al (2014) Non-pegylated liposome-encapsulated doxorubicin citrate plus cyclophosphamide or vinorelbine in metastatic breast cancer not previously treated with chemotherapy: a multicenter phase III study. Int J Oncol 45:2137–2142. https://doi.org/10.3892/ijo.2014.2604

    Article  CAS  PubMed  Google Scholar 

  25. Braverman AC, Antin JH, Plappert MT et al (1991) Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new dosing regimens. J Clin Oncol 9:1215–1223. https://doi.org/10.1200/JCO.1991.9.7.1215

    Article  CAS  PubMed  Google Scholar 

  26. Ayza MA, Zewdie KA, Tesfaye BA et al (2020) The role of antioxidants in ameliorating cyclophosphamide-induced cardiotoxicity. Oxid Med Cell Longev. https://doi.org/10.1155/2020/4965171

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cameron D, Piccart-Gebhart MJ, Gelber RD et al (2017) 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 389:1195–1205. https://doi.org/10.1016/S0140-6736(16)32616-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684. https://doi.org/10.1056/NEJMoa052122

    Article  CAS  PubMed  Google Scholar 

  29. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792. https://doi.org/10.1056/NEJM200103153441101

    Article  CAS  PubMed  Google Scholar 

  30. Kotwinski P, Smith G, Cooper J et al (2016) Body surface area and baseline blood pressure predict subclinical anthracycline cardiotoxicity in women treated for early breast cancer. PLoS ONE. https://doi.org/10.1371/journal.pone.0165262

    Article  PubMed  PubMed Central  Google Scholar 

  31. Finkelman BS, Putt M, Wang T et al (2017) Arginine-nitric oxide metabolites and cardiac dysfunction in patients with breast cancer. J Am Coll Cardiol 70:152–162. https://doi.org/10.1016/j.jacc.2017.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sawaya H, Sebag IA, Plana JC et al (2012) Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 5:596–603. https://doi.org/10.1161/CIRCIMAGING.112.973321

    Article  PubMed  PubMed Central  Google Scholar 

  33. De Azambuja E, Procter MJ, Van Veldhuisen DJ et al (2014) Trastuzumab-associated cardiac events at 8 years of median follow-up in the herceptin adjuvant trial (BIG 1–01). J Clin Oncol 32:2159–2165. https://doi.org/10.1200/JCO.2013.53.9288

    Article  CAS  PubMed  Google Scholar 

  34. Thavendiranathan P, Poulin F, Lim KD et al (2014) Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol 63:2751–2768

    Article  PubMed  Google Scholar 

  35. Cardinale D, Colombo A, Torrisi R et al (2010) Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol 28:3910–3916. https://doi.org/10.1200/JCO.2009.27.3615

    Article  CAS  PubMed  Google Scholar 

  36. Jones AL, Barlow M, Barrett-Lee PJ et al (2009) Management of cardiac health in trastuzumab-treated patients with breast cancer: updated United Kingdom National Cancer Research Institute recommendations for monitoring. Br J Cancer 100:684–692. https://doi.org/10.1038/sj.bjc.6604909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743. https://doi.org/10.1056/NEJMoa064320

    Article  CAS  PubMed  Google Scholar 

  38. Cameron D, Casey M, Press M et al (2008) A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat 112:533–543. https://doi.org/10.1007/s10549-007-9885-0

    Article  CAS  PubMed  Google Scholar 

  39. Piccart-Gebhart M, Holmes E, Baselga J et al (2016) Adjuvant lapatinib and trastuzumab for early human epidermal growth factor receptor 2-positive breast cancer: results from the randomized phase III adjuvant lapatinib and/or trastuzumab treatment optimization trial. J Clin Oncol 34:1034–1042. https://doi.org/10.1200/JCO.2015.62.1797

    Article  CAS  PubMed  Google Scholar 

  40. Perez EA, Koehler M, Byrne J et al (2008) Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc 83:679–686. https://doi.org/10.4065/83.6.679

    Article  PubMed  Google Scholar 

  41. Baselga J, Cortés J, Kim S-B et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366:109–119. https://doi.org/10.1056/NEJMoa1113216

    Article  CAS  PubMed  Google Scholar 

  42. Verma S, Miles D, Gianni L et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367:1783–1791. https://doi.org/10.1056/NEJMoa1209124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Von Minckwitz G, Huang CS, Mano MS et al (2019) Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med 380:617–628. https://doi.org/10.1056/NEJMoa1814017

    Article  Google Scholar 

  44. Peddi PF, Hurvitz SA (2014) Ado-trastuzumab emtansine (T-DM1) in human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer: latest evidence and clinical potential. Ther Adv Med Oncol 6:202–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perez EA, Barrios C, Eiermann W et al (2017) Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2-positive, advanced breast cancer: primary results from the phase III MARIANNE study. J Clin Oncol 35:141–148. https://doi.org/10.1200/JCO.2016.67.4887

    Article  CAS  PubMed  Google Scholar 

  46. Modi S, Saura C, Yamashita T et al (2020) Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med 382:610–621. https://doi.org/10.1056/NEJMoa1914510

    Article  CAS  PubMed  Google Scholar 

  47. Tamura K, Tsurutani J, Takahashi S et al (2019) Trastuzumab deruxtecan (DS-8201a)in patients with advanced HER2-positive breast cancer previously treated with trastuzumab emtansine: a dose-expansion, phase 1 study. Lancet Oncol 20:816–826. https://doi.org/10.1016/S1470-2045(19)30097-X

    Article  CAS  PubMed  Google Scholar 

  48. Burstein HJ, Sun Y, Dirix LY et al (2010) Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J Clin Oncol 28:1301–1307. https://doi.org/10.1200/JCO.2009.25.8707

    Article  CAS  PubMed  Google Scholar 

  49. A study of neratinib plus capecitabine versus lapatinib plus capecitabine in patients with HER2+ metastatic breast cancer who have received two or more prior HER2 directed regimens in the metastatic setting—study results—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/results/NCT01808573?view=results NCT01808573

  50. Yoshinori I, 1 MSKHSTMYYOKYSHKHHHNTNB (2012) Safety, efficacy and pharmacokinetics of neratinib (HKI-272) in Japanese patients with advanced solid tumors: a phase 1 dose-escalation study—PubMed. https://pubmed.ncbi.nlm.nih.gov/22371427/. Accessed 3 July 2020

  51. Lin NU, Winer EP, Wheatley D et al (2012) A phase II study of afatinib (BIBW 2992), an irreversible ErbB family blocker, in patients with HER2-positive metastatic breast cancer progressing after trastuzumab. Breast Cancer Res Treat 133:1057–1065. https://doi.org/10.1007/s10549-012-2003-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sahebkar A, Serban MC, Penson P et al (2017) The effects of tamoxifen on plasma lipoprotein(a) concentrations: systematic review and meta-analysis. Drugs 77:1187–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, Hoctin-Boes G, Houghton J, Locker GY, Tobias JS, ATAC Trialists' Group (2005) Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365(9453):60–62. https://doi.org/10.1016/S0140-6736(04)17666-6

    Article  CAS  PubMed  Google Scholar 

  54. Van De Velde CJ, Rea D, Seynaeve C et al (2011) Adjuvant tamoxifen and exemestane in early breast cancer (TEAM): a randomised phase 3 trial. Lancet 377:321–331. https://doi.org/10.1016/S0140-6736(10)62312-4

    Article  CAS  PubMed  Google Scholar 

  55. Regan MM, Price KN, Giobbie-Hurder A et al (2011) Interpreting breast international group (BIG) 1–98: a randomized, double-blind, phase III trial comparing letrozole and tamoxifen as adjuvant endocrine therapy for postmenopausal women with hormone receptor-positive, early breast cancer. Breast Cancer Res 13(3):209. https://doi.org/10.1186/bcr2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khosrow-Khavar F, NBKBFSSLA (2020) Cardiotoxicity of sequential aromatase inhibitors use in women with breast cancer. Am J Epidemiol. https://doi.org/10.1093/aje/kwaa065/5824922?redirectedFrom=fulltext

    Article  PubMed  PubMed Central  Google Scholar 

  57. Grouthier V, Lebrun-Vignes B, Glazer AM et al (2018) Increased long QT and torsade de pointes reporting on tamoxifen compared with aromatase inhibitors. Heart. https://doi.org/10.1136/heartjnl-2017-312934

    Article  PubMed  Google Scholar 

  58. Markopoulos CJ, Tsaroucha AK, Gogas HJ (2010) Effect of aromatase inhibitors on the lipid profile of postmenopausal breast cancer patients. Clin Lipidol 5:245–254

    Article  CAS  Google Scholar 

  59. Di Leo A, Jerusalem G, Petruzelka L, Torres R et al (2014) Final overall survival: fulvestrant 500 mg vs 250 mg in therandomized CONFIRM trial. J Natl Cancer Inst 106(1):djt337. https://doi.org/10.1093/jnci/djt337.

    Article  CAS  PubMed  Google Scholar 

  60. Howell A, Robertson JFR, Abram P et al (2004) Comparison of fulvestrant versus tamoxifen for the treatment of advanced breast cancer in postmenopausal women previously untreated with endocrine therapy: a multinational, double-blind, randomized trial. J Clin Oncol 22:1605–1613. https://doi.org/10.1200/JCO.2004.02.112

    Article  CAS  PubMed  Google Scholar 

  61. Chia S, Gradishar W, Mauriac L et al (2008) Double-blind, randomized placebo controlled trial of fulvestrant compared with exemestane after prior nonsteroidal aromatase inhibitor therapy in postmenopausal women with hormone receptor-positive, advanced breast cancer: Rsults from EFECT. J Clin Oncol 26:1664–1670. https://doi.org/10.1200/JCO.2007.13.5822

    Article  CAS  PubMed  Google Scholar 

  62. Bjornsti MA, Houghton PJ (2004) The TOR pathway: A target for cancer therapy. Nat Rev Cancer 4:335–348

    Article  CAS  PubMed  Google Scholar 

  63. Rugo HS, Pritchard KI, Gnant M, Noguchi S, Piccart M, Hortobagyi G et al (2014) Incidence and time course of everolimus-related adverse events in postmenopausal women with hormone receptor-positive advanced breast cancer: insights from BOLERO-2. Ann Oncol 25(4):808–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wolff AC, Lazar AA, Bondarenko I et al (2013) Randomized phase III placebo-controlled trial of letrozole plus oral temsirolimus as first-line endocrine therapy in postmenopausal women with locally advanced or metastatic breast cancer. J Clin Oncol 31:196–202. https://doi.org/10.1200/JCO.2011.38.3331

    Article  CAS  Google Scholar 

  65. André F, O’Regan R, Ozguroglu M et al (2014) Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol 15:580–591. https://doi.org/10.1016/S1470-2045(14)70138-X

    Article  CAS  PubMed  Google Scholar 

  66. Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann Oncol. https://www.annalsofoncology.org/article/S0923-7534(19)32105-2/fulltext. Accessed 3 July 2020

  67. Slamon DJ, Neven P, Chia S et al (2018) Phase III randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3. J Clin Oncol 36:2465–2472. https://doi.org/10.1200/JCO.2018.78.9909

    Article  CAS  PubMed  Google Scholar 

  68. Tripathy D, Im SA, Colleoni M et al (2018) Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol 19:904–915. https://doi.org/10.1016/S1470-2045(18)30292-4

    Article  CAS  PubMed  Google Scholar 

  69. Verma S, Bartlett CH, Schnell P et al (2016) Palbociclib in combination with fulvestrant in women with hormone receptor-positive/HER2-negative advanced metastatic breast cancer: detailed safety analysis from a multicenter, randomized, placebo-controlled, phase III study (PALOMA-3). Oncologist 21:1165–1175. https://doi.org/10.1634/theoncologist.2016-0097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. André F, Ciruelos E, Rubovszky G et al (2019) Alpelisib for PIK3CA -mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 380:1929–1940. https://doi.org/10.1056/NEJMoa1813904

    Article  PubMed  Google Scholar 

  71. Yang T, Meoli DF, Moslehi J, Roden DM (2018) Inhibition of the a-subunit of phosphoinositide 3-kinase in heart increases late sodium current and is arrhythmogenic. J Pharmacol Exp Ther 365:460–466. https://doi.org/10.1124/jpet.117.246157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chang WT, Feng YH, Kuo YH et al (2020) Layer-specific distribution of myocardial deformation from anthracycline-induced cardiotoxicity in patients with breast cancer—from bedside to bench. Int J Cardiol 311:64–70. https://doi.org/10.1016/j.ijcard.2020.01.036

    Article  PubMed  Google Scholar 

  73. Anastasiou M, Oikonomou E, Zagouri F et al (2017) Flow-mediated dilation of brachial artery as a screening tool for anthracycline-induced cardiotoxicity. J Am Coll Cardiol 70:3072

    Article  PubMed  Google Scholar 

  74. Kitayama H, Kondo T, Sugiyama J et al (2017) High-sensitive troponin T assay can predict anthracycline- and trastuzumab-induced cardiotoxicity in breast cancer patients. Breast Cancer 24:774–782. https://doi.org/10.1007/s12282-017-0778-8

    Article  PubMed  Google Scholar 

  75. Left ventricular systolic dysfunction predicted by early troponin I release after anthracycline based chemotherapy in breast cancer patients. PubMed. https://pubmed.ncbi.nlm.nih.gov/28718245/. Accessed 3 July 2020

  76. Maisel AS, Koon J, Krishnaswamy P et al (2001) Utility of B-natriuretic peptide as a rapid, point-of-care test for screening patients undergoing echocardiography to determine left ventricular dysfunction. Am Heart J 141:367–374. https://doi.org/10.1067/mhj.2001.113215

    Article  CAS  PubMed  Google Scholar 

  77. Meinardi MT, Van Veldhuisen DJ, Gietema JA et al (2001) Prospective evaluation of early cardiac damage induced by epirubicin-containing adjuvant chemotherapy and locoregional radiotherapy in breast cancer patients. J Clin Oncol 19:2746–2753. https://doi.org/10.1200/JCO.2001.19.10.2746

    Article  CAS  PubMed  Google Scholar 

  78. Lu X, Zhao Y, Chen C et al (2019) BNP as a marker for early prediction of anthracycline-induced cardiotoxicity in patients with breast cancer. Oncol Lett 18:4992–5001. https://doi.org/10.3892/ol.2019.10827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Van Boxtel W, Bulten BF, Mavinkurve-Groothuis AMC et al (2015) New biomarkers for early detection of cardiotoxicity after treatment with docetaxel, doxorubicin and cyclophosphamide. Biomarkers 20:143–148. https://doi.org/10.3109/1354750X.2015.1040839

    Article  CAS  PubMed  Google Scholar 

  80. Rigaud VOC, Ferreira LRP, Ayub-Ferreira SM et al (2017) Circulating miR-1 as a potential biomarker of doxorubicininduced cardiotoxicity in breast cancer patients. Oncotarget 8:6994–7002. https://doi.org/10.18632/oncotarget.14355

    Article  PubMed  Google Scholar 

  81. Leger KJ, Leonard D, Nielson D et al (2017) Circulating microRNAs: potential markers of cardiotoxicity in children and young adults treated with anthracycline chemotherapy. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.004653

    Article  PubMed  PubMed Central  Google Scholar 

  82. Daniela Cardinale FICMC (2020) Cardiotoxicity of anthracyclines—PubMed. Front Cardiovasc Med 7:26. https://doi.org/10.3389/fcvm.2020.00026

    Article  CAS  Google Scholar 

  83. Swain SM, Whaley FS, Gerber MC et al (1997) Delayed administration of dexrazoxane provides cordiaprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol 15:1333–1340. https://doi.org/10.1200/JCO.1997.15.4.1333

    Article  CAS  PubMed  Google Scholar 

  84. FDA, CDER Zinecard® (dexrazoxane for injection)

  85. Bosch X, Rovira M, Sitges M et al (2013) Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies. J Am Coll Cardiol 61:2355–2362. https://doi.org/10.1016/j.jacc.2013.02.072

    Article  CAS  PubMed  Google Scholar 

  86. Geeta G, Siri LH, Anne HR et al (2016) Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol—PubMed. Eur Hear. J 37(21):1671–1680. https://doi.org/10.1093/eurheartj/ehw022

    Article  CAS  Google Scholar 

  87. Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR et al (2018) Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. J Am Coll Cardiol 71:2281–2290. https://doi.org/10.1016/j.jacc.2018.02.049

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flora Zagouri.

Ethics declarations

Conflict of interest

MAD has received honoraria from participation in advisory boards from Amgen, Bristol-Myers-Squibb, Celgene, Janssen, Takeda. FZ has received honoraria for lectures and has served in an advisory role for Astra-Zeneca, Daiichi, Eli-Lilly, Merck, Novartis, Pfizer, and Roche. The remaining authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papageorgiou, C., Andrikopoulou, A., Dimopoulos, MA. et al. Cardiovascular toxicity of breast cancer treatment: an update. Cancer Chemother Pharmacol 88, 15–24 (2021). https://doi.org/10.1007/s00280-021-04254-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-021-04254-w

Keywords

Navigation