Skip to main content

Advertisement

Log in

Honokiol antagonizes doxorubicin resistance in human breast cancer via miR-188-5p/FBXW7/c-Myc pathway

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

Honokiol, a natural phenolic compound derived from Magnolia plants, is a promising anti-tumor compound that exerts a wide range of anti-cancer effects. Herein, we investigated the effect of honokiol on doxorubicin resistance in breast cancer.

Methods

Doxorubicin-sensitive (MCF-7 and MDA-MB-231) and doxorubicin-resistant (MCF-7/ADR and MDA-MB-231/ADR) breast cancer cell lines were treated with doxorubicin in the absence or presence of honokiol; then, the following tests were performed: flow cytometry for cell apoptosis, WST-1 assay for cell viability, qPCR and western blot for the expression of miR-188-5p, FBXW7, and c-Myc. MiR-188-5p mimic, miR-188-5p inhibitor, siFBXW7, and c-Myc plasmids were transfected into cancer cells to evaluate whether miR-188-5p and FBXW7/c-Myc signaling are involved in the effect of honokiol on doxorubicin resistance in breast cancer. A dual luciferase reporter system was used to study the direct interaction between miR-188-5p and FBXW7.

Results

Honokiol sensitized doxorubicin-resistant breast cancer cells to doxorubicin-induced apoptosis. Mechanically, upregulation of miR-188-5p was associated with doxorubicin resistance, and honokiol enhanced doxorubicin sensitivity by downregulating miR-188-5p. FBXW7 was confirmed to be a direct target gene of miR-188-5p. FBXW7/c-Myc signaling was involved in the chemosensitization effect of honokiol. Honokiol induced apoptosis in MCF-7/ADR and MDA-MB-231/ADR cells. However, FBXW7 silencing or c-Myc transfection resulted in resistance to the honokiol-induced apoptotic effect.

Conclusion

These findings suggest that downregulation of miR-188-5p by honokiol enhances doxorubicin sensitivity through FBXW7/c-Myc signaling in human breast cancer. Our study finds an important role of miR-188-5p in the development of doxorubicin resistance in breast cancer, and enriches our understanding of the mechanism of action of honokiol in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. https://doi.org/10.3322/caac.21262

    Article  Google Scholar 

  2. Samanta D, Park Y, Ni X, Li H, Zahnow CA, Gabrielson E et al (2018) Chemotherapy induces enrichment of CD47+/CD73+/PDL1+ immune evasive triple-negative breast cancer cells. Proc Natl Acad Sci U S A 115(6):E1239–E1248. https://doi.org/10.1073/pnas.1718197115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13(11):674–690. https://doi.org/10.1038/nrclinonc.2016.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Topham C, Tighe A, Ly P, Bennett A, Sloss O, Nelson L et al (2015) MYC is a major determinant of mitotic cell fate. Cancer Cell 28(1):129–140. https://doi.org/10.1016/j.ccell.2015.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hancock BA, Chen YH, Solzak JP, Ahmad MN, Wedge DC, Brinza D et al (2019) Profiling molecular regulators of recurrence in chemorefractory triple-negative breast cancers. Breast Cancer Res 21(1):87. https://doi.org/10.1186/s13058-019-1171-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Welcker M, Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8(2):83–93. https://doi.org/10.1038/nrc2290

    Article  CAS  PubMed  Google Scholar 

  7. King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P et al (2013) The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 153(7):1552–1566. https://doi.org/10.1016/j.cell.2013.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sato M, Rodriguez-Barrueco R, Yu J, Do C, Silva JM, Gautier J (2015) MYC is a critical target of FBXW7. Oncotarget 6(5):3292–3305. https://doi.org/10.18632/oncotarget.3203

    Article  PubMed  Google Scholar 

  9. Sailo BL, Banik K, Girisa S, Bordoloi D, Fan L, Halim CE et al (2019) FBXW7 in cancer: what has been unraveled thus far? Cancers (Basel). https://doi.org/10.3390/cancers11020246

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim HS, Woolard K, Lai C, Bauer PO, Maric D, Song H et al (2012) Gliomagenesis arising from Pten- and Ink4a/Arf-deficient neural progenitor cells is mediated by the p53-Fbxw7/Cdc4 pathway, which controls c-Myc. Cancer Res 72(22):6065–6075. https://doi.org/10.1158/0008-5472.CAN-12-2594

    Article  CAS  PubMed  Google Scholar 

  11. Zhao D, Zheng HQ, Zhou Z, Chen C (2010) The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Res 70(11):4728–4738. https://doi.org/10.1158/0008-5472.CAN-10-0040

    Article  CAS  PubMed  Google Scholar 

  12. Ma LM, Liang ZR, Zhou KR, Zhou H, Qu LH (2016) 27-Hydroxycholesterol increases Myc protein stability via suppressing PP2A, SCP1 and FBW7 transcription in MCF-7 breast cancer cells. Biochem Biophys Res Commun 480(3):328–333. https://doi.org/10.1016/j.bbrc.2016.10.038

    Article  CAS  PubMed  Google Scholar 

  13. Cheng Y, Li G (2012) Role of the ubiquitin ligase Fbw7 in cancer progression. Cancer Metastasis Rev 31(1–2):75–87. https://doi.org/10.1007/s10555-011-9330-z

    Article  CAS  PubMed  Google Scholar 

  14. Gasca J, Flores ML, Giráldez S, Ruiz-Borrego M, Tortolero M, Romero F et al (2016) Loss of FBXW7 and accumulation of MCL1 and PLK1 promote paclitaxel resistance in breast cancer. Oncotarget 7(33):52751–52765. https://doi.org/10.18632/oncotarget.10481

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  Google Scholar 

  16. Cho WC (2007) OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer 6:60. https://doi.org/10.1186/1476-4598-6-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Farazi TA, Spitzer J, Morozov P, Tuschl T (2011) miRNAs in human cancer. J Pathol 223(2):102–115. https://doi.org/10.1002/path.2806

    Article  CAS  Google Scholar 

  18. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  19. Lai X, Eberhardt M, Schmitz U, Vera J (2019) Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res 47(15):7753–7766. https://doi.org/10.1093/nar/gkz638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ding L, Gu H, Xiong X, Ao H, Cao J, Lin W et al (2019) MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance and applications in human triple-negative breast cancer. Cells. https://doi.org/10.3390/cells8121492

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhu X, Qiu J, Zhang T, Yang Y, Guo S, Li T et al (2020) MicroRNA-188-5p promotes apoptosis and inhibits cell proliferation of breast cancer cells via the MAPK signaling pathway by targeting Rap2c. J Cell Physiol 235(3):2389–2402. https://doi.org/10.1002/jcp.29144

    Article  CAS  PubMed  Google Scholar 

  22. Wang M, Zhang H, Yang F, Qiu R, Zhao X, Gong Z et al (2020) miR-188-5p suppresses cellular proliferation and migration via IL6ST: a potential noninvasive diagnostic biomarker for breast cancer. J Cell Physiol 235(5):4890–4901. https://doi.org/10.1002/jcp.29367

    Article  CAS  PubMed  Google Scholar 

  23. Hamam R, Ali AM, Alsaleh KA, Kassem M, Alfayez M, Aldahmash A et al (2016) microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection. Sci Rep 6:25997. https://doi.org/10.1038/srep25997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang M, Qiu R, Gong Z, Zhao X, Wang T, Zhou L et al (2019) miR-188-5p emerges as an oncomiRNA to promote gastric cancer cell proliferation and migration via upregulation of SALL4. J Cell Biochem 120(9):15027–15037. https://doi.org/10.1002/jcb.28764

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Yan X, Shi J, He Y, Xu J, Lin L et al (2019) Aberrantly expressed miR-188-5p promotes gastric cancer metastasis by activating Wnt/β-catenin signaling. BMC Cancer 19(1):505. https://doi.org/10.1186/s12885-019-5731-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ong CP, Lee WL, Tang YQ, Yap WH (2019) Honokiol: a review of its anticancer potential and mechanisms. Cancers (Basel). https://doi.org/10.3390/cancers12010048

    Article  PubMed Central  Google Scholar 

  27. Sengupta S, Nagalingam A, Muniraj N, Bonner MY, Mistriotis P, Afthinos A et al (2017) Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3. Oncogene 36(41):5709–5721. https://doi.org/10.1038/onc.2017.164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zang H, Qian G, Arbiser J, Owonikoko TK, Ramalingam SS, Fan S et al (2020) Overcoming acquired resistance of EGFR-mutant NSCLC cells to the third generation EGFR inhibitor, osimertinib, with the natural product honokiol. Mol Oncol. https://doi.org/10.1002/1878-0261.12645

    Article  PubMed  PubMed Central  Google Scholar 

  29. Peng Y, Shen X, Jiang H, Chen Z, Wu J, Zhu Y et al (2018) miR-188-5p suppresses gastric cancer cell proliferation and invasion via targeting ZFP91. Oncol Res 27(1):65–71. https://doi.org/10.3727/096504018X15191223015016

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yan S, Yue Y, Wang J, Li W, Sun M, Gu C et al (2019) LINC00668 promotes tumorigenesis and progression through sponging miR-188-5p and regulating USP47 in colorectal cancer. Eur J Pharmacol 858:172464. https://doi.org/10.1016/j.ejphar.2019.172464

    Article  CAS  PubMed  Google Scholar 

  31. Xue M, Cheng Y, Han F, Chang Y, Yang Y, Li X et al (2018) Triptolide attenuates renal tubular epithelial-mesenchymal transition via the MiR-188-5p-mediated PI3K/AKT pathway in diabetic kidney disease. Int J Biol Sci 14(11):1545–1557. https://doi.org/10.7150/ijbs.24032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nie ZY, Yang L, Liu XJ, Yang Z, Yang GS, Zhou J et al (2019) Morin inhibits proliferation and induces apoptosis by modulating the miR-188-5p/PTEN/AKT regulatory pathway in CML cells. Mol Cancer Ther 18(12):2296–2307. https://doi.org/10.1158/1535-7163.MCT-19-0051

    Article  CAS  PubMed  Google Scholar 

  33. Thulasiraman P, Johnson AB (2016) Regulation of Mucin 1 and multidrug resistance protein 1 by honokiol enhances the efficacy of doxorubicin-mediated growth suppression in mammary carcinoma cells. Int J Oncol 49(2):479–486. https://doi.org/10.3892/ijo.2016.3534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang MT, Lee SP, Fang CY, Hsieh PL, Liao YW, Lu MY et al (2018) Chemosensitizing effect of honokiol in oral carcinoma stem cells via regulation of IL-6/Stat3 signaling. Environ Toxicol 33(11):1105–1112. https://doi.org/10.1002/tox.22587

    Article  CAS  PubMed  Google Scholar 

  35. Zhang T, Xiang L (2019) Honokiol alleviates sepsis-induced acute kidney injury in mice by targeting the miR-218-5p/heme oxygenase-1 signaling pathway. Cell Mol Biol Lett 24:15. https://doi.org/10.1186/s11658-019-0142-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li W, Wang Q, Su Q, Ma D, An C, Ma L et al (2014) Honokiol suppresses renal cancer cells’ metastasis via dual-blocking epithelial-mesenchymal transition and cancer stem cell properties through modulating miR-141/ZEB2 signaling. Mol Cells 37(5):383–388. https://doi.org/10.14348/molcells.2014.0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Q, Li J, Zhang W, An Q, Wen J, Wang A et al (2015) Acute and sub-chronic toxicity studies of honokiol microemulsion. Regul Toxicol Pharmacol 71(3):428–436. https://doi.org/10.1016/j.yrtph.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  38. Sarrica A, Kirika N, Romeo M, Salmona M, Diomede L (2018) Safety and toxicology of magnolol and honokiol. Planta Med 84(16):1151–1164. https://doi.org/10.1055/a-0642-1966

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Natural Science Foundation of Hubei Province (Grant No. 2019CFB548) and National Nature Science Foundation of China (Grant No. 81874117 and 81974419). We would like to thank Editage (www.editage.cn) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: JX, SZ. Development of methodology: JX, XY, SZ. Acquisition of data: JX, XY, LL, JW. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): XY, JX, SZ. Writing, review, and/or revision of the manuscript: JX, SZ. Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): JX, LL. Study supervision: JX, SZ.

Corresponding authors

Correspondence to Jing Xiong or Sheng Zhou.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Lou, L., Wang, J. et al. Honokiol antagonizes doxorubicin resistance in human breast cancer via miR-188-5p/FBXW7/c-Myc pathway. Cancer Chemother Pharmacol 87, 647–656 (2021). https://doi.org/10.1007/s00280-021-04238-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-021-04238-w

Keywords

Navigation