Skip to main content
Log in

The role of the glutamine transporter ASCT2 in antineoplastic therapy

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Cancer cells are metabolically reprogrammed to support their high rates of proliferation, continuous growth, survival, invasion, metastasis, and resistance to cancer treatments. Among changes in cancer cell bioenergetics, the role of glutamine metabolism has been receiving increasing attention. Increased glutaminolysis in cancer cells is associated with increased expression of membrane transporters that mediate the cellular uptake of glutamine. ASCT2 (Alanine, Serine, Cysteine Transporter 2) is a Na+-dependent transmembrane transporter overexpressed in cancer cells and considered to be the primary transporter for glutamine in these cells. The possibility of inhibiting ASCT2 for antineoplastic therapy is currently under investigation. In this article, we will present the pharmacological agents currently known to act on ASCT2, which have been attracting attention in antineoplastic therapy research. We will also address the impact of ASCT2 inhibition on the prognosis of some cancers. We conclude that ASCT2 inhibition and combination of ASCT2 inhibitors with other anti-tumor therapies may be a promising antineoplastic strategy. However, more research is needed in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AKG:

α-Ketoglutarate

ASCT2:

Alanine, Serine, Cysteine Transporter 2

CRC:

Colorectal carcinoma

ccRCC:

Clear cell renal cell carcinoma

ER:

Estrogen receptor

Gln:

Glutamine

GS:

Glutamine synthetase

GLUD:

Glutamate dehydrogenase

GLS:

Glutaminase isoenzyme

GLS2:

Glutaminase 2 isoenzyme

GSH:

Glutathione

HCC:

Hepatocellular carcinoma

HNSCC:

Head and neck squamous cell carcinoma

LAT1:

Large amino acid transporter

mTOR:

Mammalian target of rapamycin

NSCLC:

Non-small cell lung cancer

ROS:

Reactive oxygen species

SNAT:

Sodium-coupled neutral amino acid transporter

SLC1A5:

Solute-linked carrier family A1 member 5

References

  1. DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2(5):e1600200. https://doi.org/10.1126/sciadv.1600200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168(4):657–669. https://doi.org/10.1016/j.cell.2016.12.039

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Z, Liu R, Shuai Y, Huang Y, Jin R, Wang X, Luo J (2020) ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma. Br J Cancer 122(1):82–93. https://doi.org/10.1038/s41416-019-0637-9

    Article  CAS  PubMed  Google Scholar 

  4. Altman BJ, Stine ZE, Dang CV (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16(11):749. https://doi.org/10.1038/nrc.2016.114

    Article  CAS  PubMed  Google Scholar 

  5. Hensley CT, Wasti AT, DeBerardinis RJ (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123(9):3678–3684. https://doi.org/10.1172/JCI69600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Villar VH, Merhi F, Djavaheri-Mergny M, Duran RV (2015) Glutaminolysis and autophagy in cancer. Autophagy 11(8):1198–1208. https://doi.org/10.1080/15548627.2015.1053680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhutia YD, Babu E, Ramachandran S, Ganapathy V (2015) Amino acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res 75(9):1782–1788. https://doi.org/10.1158/0008-5472.CAN-14-3745

    Article  CAS  PubMed  Google Scholar 

  8. Freidman N, Chen I, Wu Q, Briot C, Holst J, Font J, Vandenberg R, Ryan R (2020) Amino acid transporters and exchangers from the SLC1A family: structure, mechanism and roles in physiology and cancer. Neurochem Res. https://doi.org/10.1007/s11064-019-02934-x

    Article  PubMed  Google Scholar 

  9. Hara Y, Minami Y, Yoshimoto S, Hayashi N, Yamasaki A, Ueda S, Masuko K, Masuko T (2020) Anti-tumor effects of an antagonistic mAb against the ASCT2 amino acid transporter on KRAS-mutated human colorectal cancer cells. Cancer Med 9(1):302–312. https://doi.org/10.1002/cam4.2689

    Article  CAS  PubMed  Google Scholar 

  10. Liu Z, Peng Q, Li Y, Gao Y (2018) Resveratrol enhances cisplatin-induced apoptosis in human hepatoma cells via glutamine metabolism inhibition. BMB Rep 51(9):474–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ni F, Yu WM, Li Z, Graham DK, Jin L, Kang S, Rossi MR, Li S, Broxmeyer HE, Qu CK (2019) Critical role of ASCT2-mediated amino acid metabolism in promoting leukaemia development and progression. Nat Metab 1(3):390–403. https://doi.org/10.1038/s42255-019-0039-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Osanai-Sasakawa A, Hosomi K, Sumitomo Y, Takizawa T, Tomura-Suruki S, Imaizumi M, Kasai N, Poh TW, Yamano K, Yong WP, Kono K, Nakamura S, Ishii T, Nakai R (2018) An anti-ASCT2 monoclonal antibody suppresses gastric cancer growth by inducing oxidative stress and antibody dependent cellular toxicity in preclinical models. Am J Cancer Res 8(8):1499–1513

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki M, Toki H, Furuya A, Ando H (2017) Establishment of monoclonal antibodies against cell surface domains of ASCT2/SLC1A5 and their inhibition of glutamine-dependent tumor cell growth. Biochem Biophys Res Commun 482(4):651–657. https://doi.org/10.1016/j.bbrc.2016.11.089

    Article  CAS  PubMed  Google Scholar 

  14. Scriver CR, Rosenberg LE (1973) Amino acid metabolism and its disorders. Major Probl Clin Pediatr 10:1–478

    CAS  PubMed  Google Scholar 

  15. Nguyen T-L, Durán RV (2018) Glutamine metabolism in cancer therapy. Cancer Drug Resist 1:126–138. https://doi.org/10.20517/cdr.2018.08

    Article  Google Scholar 

  16. DeNicola GM, Cantley LC (2015) Cancer’s fuel choice: new flavors for a picky eater. Mol Cell 60(4):514–523. https://doi.org/10.1016/j.molcel.2015.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47. https://doi.org/10.1016/j.cmet.2015.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Still ER, Yuneva MO (2017) Hopefully devoted to Q: targeting glutamine addiction in cancer. Br J Cancer 116(11):1375–1381. https://doi.org/10.1038/bjc.2017.113

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mates JM, Di Paola FJ, Campos-Sandoval JA, Mazurek S, Marquez J (2020) Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer. Semin Cell Dev Biol 98:34–43. https://doi.org/10.1016/j.semcdb.2019.05.012

    Article  CAS  PubMed  Google Scholar 

  20. Li C, Zhang G, Zhao L, Ma Z, Chen H (2016) Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J Surg Oncol 14(1):15. https://doi.org/10.1186/s12957-016-0769-9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen JQ (1826) Russo J (2012) Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta 2:370–384. https://doi.org/10.1016/j.bbcan.2012.06.004

    Article  CAS  Google Scholar 

  22. Lane AN, Fan TW (2015) Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 43(4):2466–2485. https://doi.org/10.1093/nar/gkv047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, Cerione RA (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18(3):207–219. https://doi.org/10.1016/j.ccr.2010.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, DeBerardinis RJ (2011) Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA 108(21):8674–8679. https://doi.org/10.1073/pnas.1016627108

    Article  PubMed  PubMed Central  Google Scholar 

  25. CALITHERA (2020) Glutaminase Inhibitor Telaglenastat (CB-839). https://www.calithera.com/glutaminase-inhibitor-cb-839/. Accessed 19 Nov 2020

  26. Marchiq I, Pouyssegur J (2016) Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+) symporters. J Mol Med (Berl) 94(2):155–171. https://doi.org/10.1007/s00109-015-1307-x

    Article  CAS  Google Scholar 

  27. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104(49):19345–19350. https://doi.org/10.1073/pnas.0709747104

    Article  PubMed  PubMed Central  Google Scholar 

  28. DeBerardinis RJ, Cheng T (2010) Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29(3):313–324. https://doi.org/10.1038/onc.2009.358

    Article  CAS  PubMed  Google Scholar 

  29. Daye D, Wellen KE (2012) Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 23(4):362–369. https://doi.org/10.1016/j.semcdb.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Pavlova NN, Thompson CB (2017) Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J 36(10):1302–1315. https://doi.org/10.15252/embj.201696151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jin L, Alesi GN, Kang S (2016) Glutaminolysis as a target for cancer therapy. Oncogene 35(28):3619–3625. https://doi.org/10.1038/onc.2015.447

    Article  CAS  PubMed  Google Scholar 

  32. Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70(1):43–77. https://doi.org/10.1152/physrev.1990.70.1.43

    Article  CAS  PubMed  Google Scholar 

  33. Chan K, Busque SM, Sailer M, Stoeger C, Broer S, Daniel H, Rubio-Aliaga I, Wagner CA (2016) Loss of function mutation of the Slc38a3 glutamine transporter reveals its critical role for amino acid metabolism in the liver, brain, and kidney. Pflugers Arch 468(2):213–227. https://doi.org/10.1007/s00424-015-1742-0

    Article  CAS  PubMed  Google Scholar 

  34. Ge Y, Gu Y, Wang J (1860) Zhang Z (2018) Membrane topology of rat sodium-coupled neutral amino acid transporter 2 (SNAT2). Biochim Biophys Acta Biomembr 7:1460–1469. https://doi.org/10.1016/j.bbamem.2018.04.005

    Article  CAS  Google Scholar 

  35. Gu S, Roderick HL, Camacho P, Jiang JX (2000) Identification and characterization of an amino acid transporter expressed differentially in liver. Proc Natl Acad Sci USA 97(7):3230–3235. https://doi.org/10.1073/pnas.050318197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haussinger D, Schliess F (2007) Glutamine metabolism and signaling in the liver. Front Biosci 12:371–391. https://doi.org/10.2741/2070

    Article  PubMed  Google Scholar 

  37. Todd AC, Marx MC, Hulme SR, Broer S, Billups B (2017) SNAT3-mediated glutamine transport in perisynaptic astrocytes in situ is regulated by intracellular sodium. Glia 65(6):900–916. https://doi.org/10.1002/glia.23133

    Article  PubMed  Google Scholar 

  38. Weiss MD, Derazi S, Rossignol C, Varoqui H, Erickson JD, Kilberg MS, Anderson KJ (2003) Ontogeny of the neutral amino acid transporter SAT1/ATA1 in rat brain. Brain Res Dev Brain Res 143(2):151–159. https://doi.org/10.1016/s0165-3806(03)00107-x

    Article  CAS  PubMed  Google Scholar 

  39. Evans K, Nasim Z, Brown J, Butler H, Kauser S, Varoqui H, Erickson JD, Herbert TP, Bevington A (2007) Acidosis-sensing glutamine pump SNAT2 determines amino acid levels and mammalian target of rapamycin signalling to protein synthesis in L6 muscle cells. J Am Soc Nephrol 18(5):1426–1436. https://doi.org/10.1681/ASN.2006091014

    Article  CAS  PubMed  Google Scholar 

  40. Pinilla J, Aledo JC, Cwiklinski E, Hyde R, Taylor PM, Hundal HS (2011) SNAT2 transceptor signalling via mTOR: a role in cell growth and proliferation? Front Biosci (Elite Ed) 3:1289–1299. https://doi.org/10.2741/e332

    Article  Google Scholar 

  41. Kekuda R, Prasad PD, Fei YJ, Torres-Zamorano V, Sinha S, Yang-Feng TL, Leibach FH, Ganapathy V (1996) Cloning of the sodium-dependent, broad-scope, neutral amino acid transporter Bo from a human placental choriocarcinoma cell line. J Biol Chem 271(31):18657–18661. https://doi.org/10.1074/jbc.271.31.18657

    Article  CAS  PubMed  Google Scholar 

  42. Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15(4):254–266. https://doi.org/10.1016/j.semcancer.2005.04.005

    Article  CAS  PubMed  Google Scholar 

  43. Broer A, Wagner C, Lang F, Broer S (2000) Neutral amino acid transporter ASCT2 displays substrate-induced Na+ exchange and a substrate-gated anion conductance. Biochem J 346(Pt 3):705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cha YJ, Kim ES, Koo JS (2018) Amino acid transporters and glutamine metabolism in breast cancer. Int J Mol Sci. https://doi.org/10.3390/ijms19030907

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lu J, Chen M, Tao Z, Gao S, Li Y, Cao Y, Lu C, Zou X (2017) Effects of targeting SLC1A5 on inhibiting gastric cancer growth and tumor development in vitro and in vivo. Oncotarget 8(44):76458–76467. https://doi.org/10.18632/oncotarget.19479

    Article  PubMed  PubMed Central  Google Scholar 

  46. Marshall AD, van Geldermalsen M, Otte NJ, Lum T, Vellozzi M, Thoeng A, Pang A, Nagarajah R, Zhang B, Wang Q, Anderson L, Rasko JEJ, Holst J (2017) ASCT2 regulates glutamine uptake and cell growth in endometrial carcinoma. Oncogenesis 6(7):e367. https://doi.org/10.1038/oncsis.2017.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schulte ML, Fu A, Zhao P, Li J, Geng L, Smith ST, Kondo J, Coffey RJ, Johnson MO, Rathmell JC, Sharick JT, Skala MC, Smith JA, Berlin J, Washington MK, Nickels ML, Manning HC (2018) Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat Med 24(2):194–202. https://doi.org/10.1038/nm.4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Q, Beaumont KA, Otte NJ, Font J, Bailey CG, van Geldermalsen M, Sharp DM, Tiffen JC, Ryan RM, Jormakka M, Haass NK, Rasko JE, Holst J (2014) Targeting glutamine transport to suppress melanoma cell growth. Int J Cancer 135(5):1060–1071. https://doi.org/10.1002/ijc.28749

    Article  CAS  PubMed  Google Scholar 

  49. Wang Q, Hardie RA, Hoy AJ, van Geldermalsen M, Gao D, Fazli L, Sadowski MC, Balaban S, Schreuder M, Nagarajah R, Wong JJ, Metierre C, Pinello N, Otte NJ, Lehman ML, Gleave M, Nelson CC, Bailey CG, Ritchie W, Rasko JE, Holst J (2015) Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J Pathol 236(3):278–289. https://doi.org/10.1002/path.4518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Napolitano L, Scalise M, Galluccio M, Pochini L, Albanese LM, Indiveri C (2015) LAT1 is the transport competent unit of the LAT1/CD98 heterodimeric amino acid transporter. Int J Biochem Cell Biol 67:25–33. https://doi.org/10.1016/j.biocel.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  51. Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS, Guan KL (2015) Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 347(6218):194–198. https://doi.org/10.1126/science.1259472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fort J, de la Ballina LR, Burghardt HE, Ferrer-Costa C, Turnay J, Ferrer-Orta C, Uson I, Zorzano A, Fernandez-Recio J, Orozco M, Lizarbe MA, Fita I, Palacin M (2007) The structure of human 4F2hc ectodomain provides a model for homodimerization and electrostatic interaction with plasma membrane. J Biol Chem 282(43):31444–31452. https://doi.org/10.1074/jbc.M704524200

    Article  CAS  PubMed  Google Scholar 

  53. Wagner CA, Lang F, Broer S (2001) Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol 281(4):C1077-1093. https://doi.org/10.1152/ajpcell.2001.281.4.C1077

    Article  CAS  PubMed  Google Scholar 

  54. Salisbury TB, Arthur S (2018) The regulation and function of the L-type amino acid transporter 1 (LAT1) in cancer. Int J Mol Sci. https://doi.org/10.3390/ijms19082373

    Article  PubMed  PubMed Central  Google Scholar 

  55. El-Ansari R, Craze ML, Alfarsi L, Soria D, Diez-Rodriguez M, Nolan CC, Ellis IO, Rakha EA, Green AR (2019) The combined expression of solute carriers is associated with a poor prognosis in highly proliferative ER+ breast cancer. Breast Cancer Res Treat 175(1):27–38. https://doi.org/10.1007/s10549-018-05111-w

    Article  CAS  PubMed  Google Scholar 

  56. Karunakaran S, Ramachandran S, Coothankandaswamy V, Elangovan S, Babu E, Periyasamy-Thandavan S, Gurav A, Gnanaprakasam JP, Singh N, Schoenlein PV, Prasad PD, Thangaraju M, Ganapathy V (2011) SLC6A14 (ATB0,+) protein, a highly concentrative and broad specific amino acid transporter, is a novel and effective drug target for treatment of estrogen receptor-positive breast cancer. J Biol Chem 286(36):31830–31838. https://doi.org/10.1074/jbc.M111.229518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang Y, Cao Y, Wang Y, Li W, Liu X, Lv Y, Li X, Mi J (2017) Cysteine transporter SLC3A1 promotes breast cancer tumorigenesis. Theranostics 7(4):1036–1046. https://doi.org/10.7150/thno.18005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leo JC, Wang SM, Guo CH, Aw SE, Zhao Y, Li JM, Hui KM, Lin VC (2005) Gene regulation profile reveals consistent anticancer properties of progesterone in hormone-independent breast cancer cells transfected with progesterone receptor. Int J Cancer 117(4):561–568. https://doi.org/10.1002/ijc.21186

    Article  CAS  PubMed  Google Scholar 

  59. Sweet R, Paul A, Zastre J (2010) Hypoxia induced upregulation and function of the thiamine transporter, SLC19A3 in a breast cancer cell line. Cancer Biol Ther 10(11):1101–1111. https://doi.org/10.4161/cbt.10.11.13444

    Article  CAS  PubMed  Google Scholar 

  60. Thakkar A, Raj H, Ravishankar MB, Balakrishnan A, Padigaru M (2015) High expression of three-gene signature improves prediction of relapse-free survival in estrogen receptor-positive and node-positive breast tumors. Biomark Insights 10:103–112. https://doi.org/10.4137/BMI.S30559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Timmerman LA, Holton T, Yuneva M, Louie RJ, Padro M, Daemen A, Hu M, Chan DA, Ethier SP, Van ’t Veer LJ, Polyak K, McCormick F, Gray JW (2013) Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24(4):450–465. https://doi.org/10.1016/j.ccr.2013.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang K, Cao F, Fang W, Hu Y, Chen Y, Ding H, Yu G (2013) Activation of SNAT1/SLC38A1 in human breast cancer: correlation with p-Akt overexpression. BMC Cancer 13:343. https://doi.org/10.1186/1471-2407-13-343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rajasinghe LD, Hutchings M, Gupta SV (2019) Delta-tocotrienol modulates glutamine dependence by inhibiting ASCT2 and LAT1 transporters in non-small cell lung cancer (NSCLC) cells: a metabolomic approach. Metabolites. https://doi.org/10.3390/metabo9030050

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang L, Liu Y, Zhao TL, Li ZZ, He JY, Zhang BJ, Du HZ, Jiang JW, Yuan ST, Sun L (2019) Topotecan induces apoptosis via ASCT2 mediated oxidative stress in gastric cancer. Phytomedicine 57:117–128. https://doi.org/10.1016/j.phymed.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  65. Bungard CI, McGivan JD (2004) Glutamine availability up-regulates expression of the amino acid transporter protein ASCT2 in HepG2 cells and stimulates the ASCT2 promoter. Biochem J 382(Pt 1):27–32. https://doi.org/10.1042/BJ20040487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dolinska M, Dybel A, Hilgier W, Zielinska M, Zablocka B, Buzanska L, Albrecht J (2001) Glutamine transport in C6 glioma cells: substrate specificity and modulation in a glutamine deprived culture medium. J Neurosci Res 66(5):959–966. https://doi.org/10.1002/jnr.10047

    Article  CAS  PubMed  Google Scholar 

  67. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765. https://doi.org/10.1038/nature07823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reynolds MR, Lane AN, Robertson B, Kemp S, Liu Y, Hill BG, Dean DC, Clem BF (2014) Control of glutamine metabolism by the tumor suppressor Rb. Oncogene 33(5):556–566. https://doi.org/10.1038/onc.2012.635

    Article  CAS  PubMed  Google Scholar 

  69. Dong J, Xiao D, Zhao Z, Ren P, Li C, Hu Y, Shi J, Su H, Wang L, Liu H, Li B, Gao P, Qing G (2017) Epigenetic silencing of microRNA-137 enhances ASCT2 expression and tumor glutamine metabolism. Oncogenesis 6(7):e356. https://doi.org/10.1038/oncsis.2017.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luo M, Wu L, Zhang K, Wang H, Zhang T, Gutierrez L, O’Connell D, Zhang P, Li Y, Gao T, Ren W, Yang Y (2018) miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ 25(8):1457–1472. https://doi.org/10.1038/s41418-017-0053-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jeon YJ, Khelifa S, Ratnikov B, Scott DA, Feng Y, Parisi F, Ruller C, Lau E, Kim H, Brill LM, Jiang T, Rimm DL, Cardiff RD, Mills GB, Smith JW, Osterman AL, Kluger Y, Ronai ZA (2015) Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell 27(3):354–369. https://doi.org/10.1016/j.ccell.2015.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fanjul C, Barrenetxe J, Inigo C, Sakar Y, Ducroc R, Barber A, Lostao MP (2012) Leptin regulates sugar and amino acids transport in the human intestinal cell line Caco-2. Acta Physiol (Oxf) 205(1):82–91. https://doi.org/10.1111/j.1748-1716.2012.02412.x

    Article  CAS  Google Scholar 

  73. Ritchie JW, Baird FE, Christie GR, Stewart A, Low SY, Hundal HS, Taylor PM (2001) Mechanisms of glutamine transport in rat adipocytes and acute regulation by cell swelling. Cell Physiol Biochem 11(5):259–270. https://doi.org/10.1159/000047812

    Article  CAS  PubMed  Google Scholar 

  74. Kang C, LeRoith D, Gallagher EJ (2018) Diabetes, obesity, and breast cancer. Endocrinology 159(11):3801–3812. https://doi.org/10.1210/en.2018-00574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oppedisano F, Catto M, Koutentis PA, Nicolotti O, Pochini L, Koyioni M, Introcaso A, Michaelidou SS, Carotti A, Indiveri C (2012) Inactivation of the glutamine/amino acid transporter ASCT2 by 1,2,3-dithiazoles: proteoliposomes as a tool to gain insights in the molecular mechanism of action and of antitumor activity. Toxicol Appl Pharmacol 265(1):93–102. https://doi.org/10.1016/j.taap.2012.09.011

    Article  CAS  PubMed  Google Scholar 

  76. Grewer C, Grabsch E (2004) New inhibitors for the neutral amino acid transporter ASCT2 reveal its Na+-dependent anion leak. J Physiol 557(Pt 3):747–759. https://doi.org/10.1113/jphysiol.2004.062521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van Geldermalsen M, Quek LE, Turner N, Freidman N, Pang A, Guan YF, Krycer JR, Ryan R, Wang Q, Holst J (2018) Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways. BMC Cancer 18(1):689. https://doi.org/10.1186/s12885-018-4599-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Foster AC, Rangel-Diaz N, Staubli U, Yang JY, Penjwini M, Viswanath V, Li YX (2017) Phenylglycine analogs are inhibitors of the neutral amino acid transporters ASCT1 and ASCT2 and enhance NMDA receptor-mediated LTP in rat visual cortex slices. Neuropharmacology 126:70–83. https://doi.org/10.1016/j.neuropharm.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  79. Esslinger CS, Cybulski KA, Rhoderick JF (2005) N-gamma-aryl glutamine analogues as probes of the ASCT2 neutral amino acid transporter binding site. Bioorg Med Chem 13(4):1111–1118. https://doi.org/10.1016/j.bmc.2004.11.028

    Article  CAS  PubMed  Google Scholar 

  80. Chiu M, Sabino C, Taurino G, Bianchi MG, Andreoli R, Giuliani N, Bussolati O (2017) GPNA inhibits the sodium-independent transport system L for neutral amino acids. Amino Acids 49(8):1365–1372. https://doi.org/10.1007/s00726-017-2436-z

    Article  CAS  PubMed  Google Scholar 

  81. Broer A, Fairweather S, Broer S (2018) Disruption of amino acid homeostasis by novel ASCT2 inhibitors involves multiple targets. Front Pharmacol 9:785. https://doi.org/10.3389/fphar.2018.00785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fuchs BC, Finger RE, Onan MC, Bode BP (2007) ASCT2 silencing regulates mammalian target-of-rapamycin growth and survival signaling in human hepatoma cells. Am J Physiol Cell Physiol 293(1):C55-63. https://doi.org/10.1152/ajpcell.00330.2006

    Article  CAS  PubMed  Google Scholar 

  83. Kim S, Kim DH, Jung WH, Koo JS (2013) Expression of glutamine metabolism-related proteins according to molecular subtype of breast cancer. Endocr Relat Cancer 20(3):339–348. https://doi.org/10.1530/ERC-12-0398

    Article  CAS  PubMed  Google Scholar 

  84. Liu P, Ge M, Hu J, Li X, Che L, Sun K, Cheng L, Huang Y, Pilo MG, Cigliano A, Pes GM, Pascale RM, Brozzetti S, Vidili G, Porcu A, Cossu A, Palmieri G, Sini MC, Ribback S, Dombrowski F, Tao J, Calvisi DF, Chen L, Chen X (2017) A functional mammalian target of rapamycin complex 1 signaling is indispensable for c-Myc-driven hepatocarcinogenesis. Hepatology 66(1):167–181. https://doi.org/10.1002/hep.29183

    Article  CAS  PubMed  Google Scholar 

  85. Liu Y, Yang L, An H, Chang Y, Zhang W, Zhu Y, Xu L, Xu J (2015) High expression of Solute Carrier Family 1, member 5 (SLC1A5) is associated with poor prognosis in clear-cell renal cell carcinoma. Sci Rep 5:16954. https://doi.org/10.1038/srep16954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shimizu K, Kaira K, Tomizawa Y, Sunaga N, Kawashima O, Oriuchi N, Tominaga H, Nagamori S, Kanai Y, Yamada M, Oyama T, Takeyoshi I (2014) ASC amino-acid transporter 2 (ASCT2) as a novel prognostic marker in non-small cell lung cancer. Br J Cancer 110(8):2030–2039. https://doi.org/10.1038/bjc.2014.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kamarajan P, Rajendiran TM, Kinchen J, Bermudez M, Danciu T, Kapila YL (2017) Head and neck squamous cell carcinoma metabolism draws on glutaminolysis, and stemness is specifically regulated by glutaminolysis via aldehyde dehydrogenase. J Proteome Res 16(3):1315–1326. https://doi.org/10.1021/acs.jproteome.6b00936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang J, Guo Y, Seo W, Zhang R, Lu C, Wang Y, Luo L, Paul B, Yan W, Saxena D, Li X (2019) Targeting cellular metabolism to reduce head and neck cancer growth. Sci Rep 9(1):4995. https://doi.org/10.1038/s41598-019-41523-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lu H, Li X, Lu Y, Qiu S, Fan Z (2016) ASCT2 (SLC1A5) is an EGFR-associated protein that can be co-targeted by cetuximab to sensitize cancer cells to ROS-induced apoptosis. Cancer Lett 381(1):23–30. https://doi.org/10.1016/j.canlet.2016.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tao X, Lu Y, Qiu S, Wang Y, Qin J, Fan Z (2017) AP1G1 is involved in cetuximab-mediated downregulation of ASCT2-EGFR complex and sensitization of human head and neck squamous cell carcinoma cells to ROS-induced apoptosis. Cancer Lett 408:33–42. https://doi.org/10.1016/j.canlet.2017.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bryant KL, Mancias JD, Kimmelman AC, Der CJ (2014) KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci 39(2):91–100. https://doi.org/10.1016/j.tibs.2013.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Karachaliou N, Mayo C, Costa C, Magri I, Gimenez-Capitan A, Molina-Vila MA, Rosell R (2013) KRAS mutations in lung cancer. Clin Lung Cancer 14(3):205–214. https://doi.org/10.1016/j.cllc.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  93. Maus MK, Grimminger PP, Mack PC, Astrow SH, Stephens C, Zeger G, Hsiang J, Brabender J, Friedrich M, Alakus H, Holscher AH, Lara P, Danenberg KD, Lenz HJ, Gandara DR (2014) KRAS mutations in non-small-cell lung cancer and colorectal cancer: implications for EGFR-targeted therapies. Lung Cancer 83(2):163–167. https://doi.org/10.1016/j.lungcan.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  94. Normanno N, Tejpar S, Morgillo F, De Luca A, Van Cutsem E, Ciardiello F (2009) Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol 6(9):519–527. https://doi.org/10.1038/nrclinonc.2009.111

    Article  CAS  PubMed  Google Scholar 

  95. Mai TT, Lito P (2018) A treatment strategy for KRAS-driven tumors. Nat Med 24(7):902–904. https://doi.org/10.1038/s41591-018-0111-x

    Article  CAS  PubMed  Google Scholar 

  96. Sun HW, Yu XJ, Wu WC, Chen J, Shi M, Zheng L, Xu J (2016) GLUT1 and ASCT2 as predictors for prognosis of hepatocellular carcinoma. PLoS ONE 11(12):e0168907. https://doi.org/10.1371/journal.pone.0168907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bjersand K, Seidal T, Sundstrom-Poromaa I, Akerud H, Skirnisdottir I (2017) The clinical and prognostic correlation of HRNPM and SLC1A5 in pathogenesis and prognosis in epithelial ovarian cancer. PLoS ONE 12(6):e0179363. https://doi.org/10.1371/journal.pone.0179363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Toyoda M, Kaira K, Ohshima Y, Ishioka NS, Shino M, Sakakura K, Takayasu Y, Takahashi K, Tominaga H, Oriuchi N, Nagamori S, Kanai Y, Oyama T, Chikamatsu K (2014) Prognostic significance of amino-acid transporter expression (LAT1, ASCT2, and xCT) in surgically resected tongue cancer. Br J Cancer 110(10):2506–2513. https://doi.org/10.1038/bjc.2014.178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Broer A, Rahimi F, Broer S (2016) Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. J Biol Chem 291(25):13194–13205. https://doi.org/10.1074/jbc.M115.700534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cormerais Y, Massard PA, Vucetic M, Giuliano S, Tambutte E, Durivault J, Vial V, Endou H, Wempe MF, Parks SK, Pouyssegur J (2018) The glutamine transporter ASCT2 (SLC1A5) promotes tumor growth independently of the amino acid transporter LAT1 (SLC7A5). J Biol Chem 293(8):2877–2887. https://doi.org/10.1074/jbc.RA117.001342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hashimoto Y, Sadamoto Y, Konno A, Kon Y, Iwanaga T (2004) Distribution of neutral amino acid transporter ASCT 1 in the non-neuronal tissues of mice. Jpn J Vet Res 52(3):113–124

    PubMed  Google Scholar 

Download references

Funding

F. Martel acknowledges funding from FCT—Fundação para a Ciência e a Tecnologia (Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (UID/BIM/04293/2013)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Martel.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, E., Silva, C. & Martel, F. The role of the glutamine transporter ASCT2 in antineoplastic therapy. Cancer Chemother Pharmacol 87, 447–464 (2021). https://doi.org/10.1007/s00280-020-04218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-020-04218-6

Keywords

Navigation