Skip to main content

Advertisement

Log in

A phase I trial of intravenous catumaxomab: a bispecific monoclonal antibody targeting EpCAM and the T cell coreceptor CD3

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to evaluate the safety and determine the maximum tolerated dose (MTD) of intravenous catumaxomab, a trifunctional bispecific antibody that binds to EpCAM on epithelial cancer cells and CD3 on T cells.

Methods

The trial was a dose-escalation study with a 3 + 3 design in epithelial cancers with known EpCAM expression. The dose-limiting toxicity (DLT) period consisted of 4 weeks, with weekly intravenous administration of catumaxomab. Key DLTs were ≥grade 3 optimally treated non-hematological toxicity; ≥grade 3 infusion-related reactions refractory to supportive care; ≥grade 3 increase in liver enzymes and/or bilirubin not resolving to grade 2.

Results

Sixteen patients were enrolled receiving doses of 2 (n = 5), 4 (n = 3), 7 (n = 7) and 10 µg catumaxomab (n = 1). The most common treatment-emergent adverse events (TEAEs) were chills (93.8 %) and pyrexia (87.5 %). The most common TEAE of grade ≥3 was transient dose-dependent increases in aspartate aminotransferase (56.3 %). The intensity of toxicities decreased with the number of infusions. Also, serum IL-6 increased in a dose-dependent manner and reverted to low or undetectable levels after four infusions. A reversible decrease in liver function test (prothrombin time) at the 7-µg dose level was considered a DLT. The first patient at 10 µg experienced a fatal hepatic failure related to catumaxomab that led to the termination of the study.

Conclusions

The MTD of weekly intravenous catumaxomab was 7 µg. Major toxicities were cytokine release-related symptoms and hepatotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Went P, Lugli A, Meier S et al (2004) Frequent EpCAM protein expression in human carcinomas. Hum Pathol 35:122–128

    Article  CAS  PubMed  Google Scholar 

  2. Went P, Vasei M, Bubendorf L et al (2006) Frequent high-level expression of the immunotherapeutic target EpCAM in colon, stomach, prostate and lung cancers. Br J Cancer 94:128–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Spizzo G, Went P, Dirnhofer S et al (2004) High EpCAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Res Treat 86:207–213

    Article  CAS  PubMed  Google Scholar 

  4. Spizzo G, Went P, Dirnhofer S et al (2006) Overexpression of epithelial cell adhesion molecule (EpCAM) is an independent prognostic marker for reduced survival of patients with epithelial ovarian cancer. Gynecol Oncol 103:483–488

    Article  CAS  PubMed  Google Scholar 

  5. Balzar M, Winter MJ, de Boer CJ et al (1999) The biology of the 17-1A antigen (EpCAM). J Mol Mod 77:699–712

    Article  CAS  Google Scholar 

  6. Pauli C, Muenz M, Kieu C et al (2003) Tumor-specific glycosylation of the carcinoma-associated epithelial cell adhesion molecule EpCAM in head and neck carcinomas. Cancer Lett 193:25–32

    Article  CAS  PubMed  Google Scholar 

  7. Lindhofer H, Mocikat R, Steipe B et al (1995) Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J Immunol 155:219–225

    CAS  PubMed  Google Scholar 

  8. Zeidler R, Reisbach G, Wollenberg B et al (1999) Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing. J Immunol 163:1246–1252

    CAS  PubMed  Google Scholar 

  9. Zhang S, Zhang HS, Cordon-Cardo C et al (1998) Selection of tumor antigens as targets for immune attack using immunohistochemistry: protein antigens. Clin Cancer Res 4:2669–2676

    CAS  PubMed  Google Scholar 

  10. Riesenberg R, Buchner A, Pohla H et al (2001) Lysis of prostate carcinoma cells by trifunctional bispecific antibodies (alpha EpCAM x alpha CD3). J Histochem Cytochem 49:911–917

    Article  CAS  PubMed  Google Scholar 

  11. Zeidler R, Mysliwietz J, Csanady M et al (2000) The Fc-region of a new class of intact bispecific antibody mediates activation of accessory cells and NK cells and induces direct phagocytosis of tumour cells. Br J Cancer 83:261–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Schmitt M, Schmitt A, Reinhardt P et al (2004) Opsonization with a trifunctional bispecific (alphaCD3 x alphaEpCAM) antibody results in efficient lysis in vitro and in vivo of EpCAM positive tumor cells by cytotoxic T lymphocytes. Int J Oncol 25:841–848

    CAS  PubMed  Google Scholar 

  13. Seimetz D, Lindhofer H, Bokemeyer C (2010) Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev 36:458–467

    Article  CAS  PubMed  Google Scholar 

  14. Heiss MM, Murawa P, Koralewski P et al (2010) The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer 127:2209–2221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Petrelli F, Borgonovo K, Lonati V et al (2013) Regression of liver metastases after treatment with intraperitoneal catumaxomab for malignant ascites due to breast cancer. Target Oncol 8:291–294

    Article  PubMed  Google Scholar 

  16. Bezan A, Hohla F, Meissnitzer T et al (2013) Systemic effect of catumaxomab in a patient with metastasized colorectal cancer: a case report. BMC Cancer 13:618

    Article  PubMed Central  PubMed  Google Scholar 

  17. Sebastian M, Passlick B, Friccius-Quecke H et al (2007) Treatment of non-small cell lung cancer patients with the trifunctional monoclonal antibody catumaxomab (anti-EpCAM x anti-CD3): a phase I study. Cancer Immunol Immunother 56:1637–1644

    Article  CAS  PubMed  Google Scholar 

  18. Le Tourneau C, Lee JJ, Siu LL (2009) Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst 101:708–720

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ruf P, Kluge M, Jäger M et al (2010) Pharmacokinetics, immunogenicity and bioactivity of the therapeutic antibody catumaxomab intraperitoneally administered to cancer patients. Br J Clin Pharmacol 69:617–625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Amacher DE (1998) Serum transaminase elevations as indicators of hepatic injury following the administration of drugs. Regul Toxicol Pharmacol 27:119–130

    Article  CAS  PubMed  Google Scholar 

  21. Suntharalingam G, Perry MR, Ward S et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355:1018–1028

    Article  CAS  PubMed  Google Scholar 

  22. Riechelmann H, Wiesneth M, Schauwecker P et al (2007) Adoptive therapy of head and neck squamous cell carcinoma with antibody coated immune cells: a pilot clinical trial. Cancer Immunol Immunother 56:1397–1406

    Article  CAS  PubMed  Google Scholar 

  23. Bugelski PJ, Achuthanandam R, Capocasale RJ et al (2009) Monoclonal antibody-induced cytokine-release syndrome. Expert Rev Clin Immunol 5:499–521

    Article  CAS  PubMed  Google Scholar 

  24. Burges A, Wimberger P, Kümper C et al (2007) Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a phase I/II study. Clin Cancer Res 13:3899–3905

    Article  CAS  PubMed  Google Scholar 

  25. Pietzner K, Vergote I, Santoro A et al (2014) Re-challenge with catumaxomab in patients with malignant ascites: results from the SECIMAS study. Med Oncol 31:308

    Article  PubMed  Google Scholar 

  26. Thomaidis T, Wörns MA, Galle PR et al (2014) Treatment of malignant ascites with a second cycle of catumaxomab in gastric signet cell carcinoma—a report of 2 cases. Oncol Res Treat 37:674–677

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the participating patients and their families. Professor Meinolf Karthaus (Chair) and Professor Lena Specht served as voting members of the Dose Steering Board. Statistician Ib Jarle Christensen is acknowledged for excellent statistical advice. The trial was sponsored by Neovii Biotech GmbH, formerly Fresenius Biotech GmbH. Medical writing assistance was provided by Neovii Biotech GmbH.

Conflict of interest

M.M.S served on an advisory board for Fresenius Biotech GmbH. C.D declares no potential conflict of interest concerning catumaxomab and its development. R.D declares no potential conflicts of interest. U.L declares no potential conflict of interest W.B declares no potential conflict of interest concerning catumaxomab and its development. H.M is an employee of Neovii Biotech GmbH. J.T declares no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Mau-Sørensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mau-Sørensen, M., Dittrich, C., Dienstmann, R. et al. A phase I trial of intravenous catumaxomab: a bispecific monoclonal antibody targeting EpCAM and the T cell coreceptor CD3. Cancer Chemother Pharmacol 75, 1065–1073 (2015). https://doi.org/10.1007/s00280-015-2728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2728-5

Keywords

Navigation