Skip to main content

Advertisement

Log in

CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Gene therapy represents a significant potential to revolutionize the field of hematology with applications in correcting genetic mutations, generating cell lines and animal models, and improving the feasibility and efficacy of cancer immunotherapy. Compared to different genetic engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated protein 9 (Cas9) emerged as an effective and versatile genetic editor with the ability to precisely modify the genome. The applications of genetic engineering in various hematological disorders have shown encouraging results. Monogenic hematological disorders can conceivably be corrected with single gene modification. Through the use of CRISPR-CAS9, restoration of functional red blood cells and hemostasis factors were successfully attained in sickle cell anemia, beta-thalassemia, and hemophilia disorders. Our understanding of hemato-oncology has been advanced via CRIPSR-CAS9 technology. CRISPR-CAS9 aided to build a platform of mutated genes responsible for cell survival and proliferation in leukemia. Therapeutic application of CRISPR-CAS9 when combined with chimeric antigen receptor (CAR) T cell therapy in multiple myeloma and acute lymphoblastic leukemia was feasible with attenuation of CAR T cell therapy pitfalls. Our review outlines the latest literature on the utilization of CRISPR-Cas9 in the treatment of beta-hemoglobinopathies and hemophilia disorders. We present the strategies that were employed and the findings of preclinical and clinical trials. Also, the review will discuss gene engineering in the field of hemato-oncology as a proper tool to facilitate and overcome the drawbacks of chimeric antigen receptor T cell therapy (CAR-T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

DNA :

deoxyribonucleic acid

ZFN :

zinc finger nuclease

TALEN :

transcription activator-like effector nuclease

CRISPR :

clustered regulatory interspaced short palindromic repeats

Cas9 :

CRISPR-associated protein 9

DSB :

DNA double-strand break

NHEJ :

non-homologous end joining

HDR :

homology-directed repair

INDELs :

insertion and deletion mutations

RNA :

ribonucleic acid

SCD :

sickle cell disease

HSCT :

hematopoietic stem cell transplantation

Cr-RNA :

CRISPR RNA

Tracr-RNA :

transactivating crRNA

PAM :

protospacer adjacent motif

sgRNA :

single-strand small-guide RNA

CAR :

chimeric antigen receptor

dCas9 :

deactivated Cas9

RT :

reverse transcriptase

pegRNA :

prime-editing single guide RNA

SCA :

sickle cell anemia

TM :

thalassemia major

HbS :

hemoglobin S

HbF :

fetal hemoglobin

HbA :

adult hemoglobin

HPFH :

hereditary persistence of fetal hemoglobin

IPSCs :

induced pluripotent stem cells

UTR :

untranslated region

FDA :

Food and Drug Administration

HLA :

human leukocyte antigens

TRAC :

T-cell alpha receptor

PD-1 :

programmed cell death protein 1

GvH :

graft-versus-host

TCR-B :

T cell receptor beta

ASXL1 :

additional sex combs-like 1

AML :

acute myeloid leukemia

CML :

chronic myeloid leukemia

PRC2 :

polycomb repressive complex 2

VRPEB1 :

V-set pre-B-cell surrogate light chain 1

MM :

multiple myeloma

BDDF8 :

B domain-deleted factor 8

EF1α :

human elongation factor 1 alpha

ssODN :

single-stranded-oligodeoxynucleotide

References

  1. Jiang S, Shen QW (2019) Principles of gene editing techniques and applications in animal husbandry. 3. Biotech 9(1):1–9

    Google Scholar 

  2. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 51(3):503–512

    Article  CAS  PubMed  Google Scholar 

  3. González-Romero E, Martínez-Valiente C, García-Ruiz C, Vázquez-Manrique RP, Cervera J, Sanjuan-Pla A (2019) CRISPR to fix bad blood: a new tool in basic and clinical hematology. Haematologica. 104(5):881

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ahmad HI, Ahmad MJ, Asif AR, Adnan M, Iqbal MK, Mehmood K, Muhammad SA, Bhuiyan AA, Elokil A, Du X, Zhao C (2018) A review of CRISPR-based genome editing: survival, evolution and challenges. Curr Issues Mol Biol 28(1):47–68

    Article  PubMed  Google Scholar 

  5. Chen Y, Wen R, Yang Z, Chen Z (2022) Genome editing using CRISPR/Cas9 to treat hereditary hematological disorders. Gene Ther 29(5):207–216

    Article  CAS  PubMed  Google Scholar 

  6. Asmamaw M, Zawdie B (2021) Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biol Targets Ther 15:353

    Article  Google Scholar 

  7. Jacinto FV, Link W, Ferreira BI (2020) CRISPR/Cas9-mediated genome editing: from basic research to translational medicine. J Cell Mol Med 24(7):3766–3778

    Article  PubMed  PubMed Central  Google Scholar 

  8. Konstantakos V, Nentidis A, Krithara A, Paliouras G (2022) CRISPR–Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning. Nucleic Acids Res 50(7):3616–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tahir T, Ali Q, Rashid MS, Malik A (2020) The journey of CRISPR-Cas9 from bacterial defense mechanism to a gene editing tool in both animals and plants. Biol Clin Sci Res J 2020(1)

  10. Westermann L, Neubauer B, Köttgen M (2021) Nobel Prize 2020 in Chemistry honors CRISPR: a tool for rewriting the code of life. Pflugers Arch - Eur J Physiol 473(1):1–2

    Article  CAS  Google Scholar 

  11. Porteus MH (2017) Genome editing for the β-hemoglobinopathies. In: Malik P, Tisdale J (eds) Gene and cell therapies for beta-globinopathies. Advances in experimental medicine and biology, vol 1013. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7299-9_8

    Chapter  Google Scholar 

  12. Kunz JB, Kulozik AE (2020) Gene therapy of the hemoglobinopathies. HemaSphere 4:5

    Article  Google Scholar 

  13. Frati G, Miccio A (2021) Genome editing for β-hemoglobinopathies: advances and challenges. J Clin Med 10(3):482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sochacka-Ćwikła A, Mączyński M, Regiec A (2021) FDA-approved drugs for hematological malignancies—the last decade review. Cancers 14(1):87

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stewart RL, Koo SC, Furtado LV (2018) Principles of molecular biology and oncogenesis. In Precision molecular pathology of neoplastic pediatric diseases. Springer, Cham, pp 3–8

    Google Scholar 

  16. Reschke M, Seitzer N, Clohessy J, Pandolfi P (2014) Hematological malignancies and premalignant conditions. In: Parsyan A (ed) Translation and its regulation in cancer biology and medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9078-9_23

    Chapter  Google Scholar 

  17. Dakubo GD (2019) Hematologic malignancy biomarkers in proximal fluids. In: Cancer biomarkers in body fluids. Springer, Cham. https://doi.org/10.1007/978-3-030-24725-6_12

    Chapter  Google Scholar 

  18. Deshantri AK, Moreira AV, Ecker V, Mandhane SN, Schiffelers RM, Buchner M, Fens MH (2018) Nanomedicines for the treatment of hematological malignancies. J Control Release 287:194–215

    Article  CAS  PubMed  Google Scholar 

  19. Berntorp E, Fischer K, Hart DP, Mancuso ME, Stephensen D, Shapiro AD, Blanchette V (2021) Haemophilia. Nat Rev Dis Primers 7(1):1–9

    Article  Google Scholar 

  20. Weyand AC, Pipe SW (2019) New therapies for hemophilia. Blood J American Soc Hematol 133(5):389–398

    CAS  Google Scholar 

  21. Park CY, Lee DR, Sung JJ, Kim DW (2016) Genome-editing technologies for gene correction of hemophilia. Hum Genet 135(9):977–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lone BA, Karna SKL, Ahmad F, Shahi N, Pokharel YR (2018) CRISPR/CAS9 System: a bacterial tailor for genomic engineering. Genet Res Int 2018:1–17

  23. Hryhorowicz M, Lipiński D, Zeyland J, Słomski R (2017) CRISPR/Cas9 immune system as a tool for genome engineering. Arch Immunol Ther Exp 65(3):233–240

    Article  CAS  Google Scholar 

  24. Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46(1):505–529

    Article  CAS  PubMed  Google Scholar 

  25. Wang SW, Gao C, Zheng YM et al (2022) Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer 21:57. https://doi.org/10.1186/s12943-022-01518-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gupta D, Bhattacharjee O, Mandal D, Sen MK, Dey D, Dasgupta A, Kazi TA, Gupta R, Sinharoy S, Acharya K, Chattopadhyay D (2019) CRISPR-Cas9 system: a new-fangled dawn in gene editing. Life Sci 232:116636

    Article  CAS  PubMed  Google Scholar 

  27. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  PubMed  Google Scholar 

  28. Liu C, Zhang L, Liu H, Cheng K (2017 Nov) Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 28(266):17–26

    Article  Google Scholar 

  29. Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, Bijak M (2020) Various aspects of a gene editing system—crispr–cas9. Int J Mol Sci 21(24):9604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang B (2021) CRISPR/Cas gene therapy. J Cell Physiol 236(4):2459–2481

    Article  CAS  PubMed  Google Scholar 

  31. Zhang H, Qin C, An C, Zheng X, Wen S, Chen W, Liu X, Lv Z, Yang P, Xu W, Gao W (2021) Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer 20(1):1–22

    Article  Google Scholar 

  32. Ghaemi A, Bagheri E, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M (2021) CRISPR-cas9 genome editing delivery systems for targeted cancer therapy. Life Sci 267:118969

    Article  CAS  PubMed  Google Scholar 

  33. Hendriks D, Clevers H, Artegiani B (2020) CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell 27(5):705–731

    Article  CAS  PubMed  Google Scholar 

  34. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: research technologies, clinical applications and ethical considerations. Seminars in perinatology 2018 (42 8, 487-500). WB Saunders

    Google Scholar 

  36. Kantor A, McClements ME, MacLaren RE (2020) CRISPR-Cas9 DNA base-editing and prime-editing. Int J Mol Sci 21(17):6240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38(7):824–844

    Article  CAS  PubMed  Google Scholar 

  39. Sundd P, Gladwin MT, Novelli EM (2019) Pathophysiology of sickle cell disease. Annu Rev Pathol 14:263

    Article  CAS  PubMed  Google Scholar 

  40. Williams TN, Thein SL (2018) Sickle cell anemia and its phenotypes. Annu Rev Genomics Hum Genet 19:113–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tisdale JF, Thein SL, Eaton WA (2020) Treating sickle cell anemia. Science 367(6483):1198–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Needs T, Gonzalez-Mosquera LF,  Lynch DT (2022) Beta thalassemia. StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL)

  43. Constantinou C, Spella M, Chondrou V, Patrinos GP, Papachatzopoulou A, Sgourou A (2019) The multi-faceted functioning portrait of LRF/ZBTB7A. Hum Gen 13(1):1–4

    Google Scholar 

  44. Demirci S, Zeng J, Wu Y, Uchida N, Shen AH, Pellin D, Gamer J, Yapundich M, Drysdale C, Bonanno J, Bonifacino AC (2020) BCL11A enhancer–edited hematopoietic stem cells persist in rhesus monkeys without toxicity. J Clin Invest 130(12):6677–6687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bauer DE, Orkin SH (2015) Hemoglobin switching’s surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev 33:62–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jensen TI, Axelgaard E, Bak RO (2019) Therapeutic gene editing in haematological disorders with CRISPR/Cas9. Br J Haematol 185(5):821–835

    Article  PubMed  Google Scholar 

  47. Quintana-Bustamante O, Fañanas-Baquero S, Dessy-Rodriguez M, Ojeda-Pérez I, Segovia JC (2022) Gene editing for inherited red blood cell diseases. Front Physiol 28(13):848261

    Article  Google Scholar 

  48. Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S (2015) BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527(7577):192–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeng J, Wu Y, Ren C, Bonanno J, Shen AH, Shea D, Gehrke JM, Clement K, Luk K, Yao Q, Kim R (2020) Therapeutic base editing of human hematopoietic stem cells. Nat Med 26(4):535–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu Y, Zeng J, Roscoe BP, Liu P, Yao Q, Lazzarotto CR, Clement K, Cole MA, Luk K, Baricordi C, Shen AH (2019) Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med 25(5):776–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weber L, Frati G, Felix T, Hardouin G, Casini A, Wollenschlaeger C, Meneghini V, Masson C, De Cian A, Chalumeau A, Mavilio F (2020) Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci Adv 6(7):eaay9392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Masuda T, Wang X, Maeda M, Canver MC, Sher F, Funnell AP, Fisher C, Suciu M, Martyn GE, Norton LJ, Zhu C (2016) Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 351(6270):285–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, Foell J, de la Fuente J, Grupp S, Handgretinger R, Ho TW (2021) CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 384(3):252–260

    Article  CAS  PubMed  Google Scholar 

  54. Fu B, Liao J, Chen S, Li W, Wang Q, Hu J, Yang F, Hsiao S, Jiang Y, Wang L, Chen F (2022) CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia. Nat Med 28(8):1573–1580

    Article  CAS  PubMed  Google Scholar 

  55. Esrick EB, Lehmann LE, Biffi A, Achebe M, Brendel C, Ciuculescu MF, Daley H, MacKinnon B, Morris E, Federico A, Abriss D (2021) Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med 384(3):205–215

    Article  CAS  PubMed  Google Scholar 

  56. Cao A, Galanello R (2010) Beta-thalassemia. Genet Med 12(2):61–76

    Article  CAS  PubMed  Google Scholar 

  57. Thein SL (2017) Genetic basis and genetic modifiers of β-thalassemia and sickle cell disease. Gene and Cell Therapies for Beta-Globinopathies 27–57

  58. Song B, Fan Y, He W, Zhu D, Niu X, Wang D, Ou Z, Luo M, Sun X (2015) Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev 24(9):1053–1065

    Article  CAS  PubMed  Google Scholar 

  59. Niu X, He W, Song B, Ou Z, Fan D, Chen Y, Fan Y, Sun X (2016) Combining single strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in β-thalassemia-induced pluripotent stem cells. J Biol Chem 291(32):16576–16585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW (2014) Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 24(9):1526–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu P, Tong Y, Liu XZ, Wang TT, Cheng L, Wang BY, Lv X, Huang Y, Liu DP (2015) Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C> T) mutation in β-thalassemia-derived iPSCs. Sci Rep 5(1):1–2

    Google Scholar 

  62. Dever DP et al (2016) CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 539(7629):384–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wilkinson AC, Dever DP, Baik R, Camarena J, Hsu I, Charlesworth CT, Morita C, Nakauchi H, Porteus MH (2021) Cas9-AAV6 gene correction of beta-globin in autologous HSCs improves sickle cell disease erythropoiesis in mice. Nat Commun 12(1):1–9

    Article  Google Scholar 

  64. Lattanzi A, Camarena J, Lahiri P, Segal H, Srifa W, Vakulskas CA, Frock RL, Kenrick J, Lee C, Talbott N, Skowronski J (2021) Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Sci Transl Med 13(598):eabf2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cai L, Bai H, Mahairaki V, Gao Y, He C, Wen Y, Jin YC, Wang Y, Pan RL, Qasba A, Ye Z (2018) A universal approach to correct various HBB gene mutations in human stem cells for gene therapy of beta-thalassemia and sickle cell disease. Stem Cells Transl Med 7(1):87–97

    Article  CAS  PubMed  Google Scholar 

  66. Li H, Yang Y, Hong W et al (2020) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Sig Transduct Target Ther 5:1. https://doi.org/10.1038/s41392-019-0089-y

    Article  Google Scholar 

  67. Iyer DN, Schimmer AD, Chang H (2023) Applying CRISPR-Cas9 screens to dissect hematological malignancies. Blood Adv 7(10):2252–2270

  68. Sterner RC, Sterner RM (2021) CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 11(4):1

    Article  Google Scholar 

  69. Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P, Ganguly N (2019) CAR T cell therapy: a new era for cancer treatment. Oncol Rep 42(6):2183–2195

    CAS  PubMed  Google Scholar 

  70. Han D, Xu Z, Zhuang Y, Ye Z, Qian Q (2021) Current progress in CAR-T cell therapy for hematological malignancies. J Cancer 12(2):326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Holstein SA, Lunning MA (2020) CAR T-cell therapy in hematologic malignancies: a voyage in progress. Clin Pharmacol Ther 107(1):112–122

    Article  CAS  PubMed  Google Scholar 

  72. Dimitri A, Herbst F, Fraietta JA (2022) Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer 21(1):1–3

    Article  Google Scholar 

  73. Razeghian E, Nasution MK, Rahman HS, Gardanova ZR, Abdelbasset WK, Aravindhan S, Bokov DO, Suksatan W, Nakhaei P, Shariatzadeh S, Marofi F (2021) A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Stem Cell Res Ther 12(1):1–7

    Article  Google Scholar 

  74. Khan A, Sarkar E (2022) Review CRISPR/Cas9 encouraged CAR-T cell immunotherapy reporting efficient and safe clinical results towards cancer. Cancer Treat Res Commun 27:100641

    Article  Google Scholar 

  75. Wang L, Chen Y, Liu X, Li Z, Dai X (2022) The application of CRISPR/Cas9 technology for cancer immunotherapy: current status and problems. Front Oncol 17(11):5853

    Google Scholar 

  76. Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH, Forsman CL, Hansen MJ, Jin F, Ayasoufi K, Hefazi M, Schick KJ (2019) GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood J American Soc Hematol 133(7):697–709

    CAS  Google Scholar 

  77. Tang N, Cheng C, Zhang X, Qiao M, Li N, Mu W, Wei XF, Han W, Wang H (2020) TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI insight 5(4)

  78. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, Odak A, Gönen M, Sadelain M (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543(7643):113–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Georgiadis C, Preece R, Nickolay L, Etuk A, Petrova A, Ladon D, Danyi A, Humphryes-Kirilov N, Ajetunmobi A, Kim D, Kim JS (2018) Long terminal repeat CRISPR-CAR-coupled “universal” T cells mediate potent anti-leukemic effects. Mol Ther 26(5):1215–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, Marson A (2017) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep 7(1):1

    Article  CAS  Google Scholar 

  81. Stenger D, Stief TA, Kaeuferle T, Willier S, Rataj F, Schober K, Vick B, Lotfi R, Wagner B, Grünewald TG, Kobold S (2020) Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR. Blood 136(12):1407–1418

    Article  PubMed  Google Scholar 

  82. Stadtmauer EA, Cohen AD, Weber K, Lacey SF, Gonzalez VE, Melenhorst JJ, June CH (2019) First-in-human assessment of feasibility and safety of multiplexed genetic engineering of autologous T cells expressing NY-ESO-1 TCR and CRISPR/Cas9 gene edited to eliminate endogenous TCR and PD-1 (NYCE T cells) in advanced multiple myeloma (MM) and sarcoma. Blood 134:49

  83. Wei G, Zhang Y, Zhao H, Wang Y, Liu Y, Liang B, Wang X, Xu H, Cui J, Wu W, Zhao K (2021) CD19/CD22 dual-targeted CAR T-cell therapy for relapsed/refractory aggressive B-cell lymphoma: a safety and efficacy study. Cancer Immunol Res 9(9):1061–1070

    Article  CAS  PubMed  Google Scholar 

  84. Asada S, Fujino T, Goyama S, Kitamura T (2019) The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci 76(13):2511–2523

    Article  CAS  PubMed  Google Scholar 

  85. Valletta S, Dolatshad H, Bartenstein M, Yip BH, Bello E, Gordon S, Yu Y, Shaw J, Roy S, Scifo L, Schuh A (2015) ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget 6(42):44061

    Article  PubMed  PubMed Central  Google Scholar 

  86. Felce SL, Anderson AP, Maguire S, Gascoyne DM, Armstrong RN, Wong KK, Li D, Banham AH (2020) CRISPR/Cas9-mediated Foxp1 silencing restores immune surveillance in an immunocompetent A20 lymphoma model. Front Oncol 3(10):448

    Article  Google Scholar 

  87. Schlager S, Salomon C, Olt S, Albrecht C, Ebert A, Bergner O, Wachter J, Trapani F, Gerlach D, Voss T, Traunbauer A (2020) Inducible knock-out of BCL6 in lymphoma cells results in tumor stasis. Oncotarget 11(9):875

    Article  PubMed  PubMed Central  Google Scholar 

  88. Khaled M, Moustafa AS, El-Khazragy N, Ahmed MI, Abd Elkhalek MA, El-Salahy EM (2021) CRISPR/Cas9 mediated knock-out of VPREB1 gene induces a cytotoxic effect in myeloma cells. PLoS One 16(1):e0245349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tzelepis K, Koike-Yusa H, De Braekeleer E, Li Y, Metzakopian E, Dovey OM, Mupo A, Grinkevich V, Li M, Mazan M, Gozdecka M (2016) A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep 17(4):1193–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mercier FE, Shi J, Sykes DB, Oki T, Jankovic M, Man CH, Kfoury YS, Miller E, He S, Zhu A, Vasic R (2022) In vivo genome-wide CRISPR screening in murine acute myeloid leukemia uncovers microenvironmental dependencies. Blood Adv 6(17):5072–5084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ohmori T (2020) Advances in gene therapy for hemophilia: basis, current status, and future perspectives. Int J Hematol 111(1):31–41

    Article  PubMed  Google Scholar 

  92. Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, Kim JH, Kim DW, Kim JS (2015) Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17(2):213–220

    Article  CAS  PubMed  Google Scholar 

  93. Dinh LV, Fine E, Ameri A, Luu BW, Kumar S, Diego VP, Curran JE, Peralta JM, Mead H, Escobar MA, Williams-Blangero S (2020) Specific correction of the intron-22 inverted factor VIII gene in autologous blood outgrowth endothelial cells from patients with severe hemophilia A. Blood 5(136):30–31

    Article  Google Scholar 

  94. Luo S, Li Z, Dai X, Zhang R, Liang Z, Li W, Zeng M, Su J, Wang J, Liang X, Wu Y (2021) CRISPR/Cas9-mediated in vivo genetic correction in a mouse model of hemophilia A. Front Cell Dev Biol 16(9):672564

    Article  Google Scholar 

  95. Tantawy AA  (2010) Molecular genetics of hemophilia A: Clinical perspectives. Egypt J Med Hum Genet 11(2)

  96. Everett LA, Cleuren AC, Khoriaty RN, Ginsburg D (2014) Murine coagulation factor VIII is synthesized in endothelial cells. Blood J American Soc Hematol 123(24):3697–3705

    CAS  Google Scholar 

  97. Shahani T, Covens K, Lavend'Homme R, Jazouli N, Sokal E, Peerlinck K, Jacquemin M (2014) Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII. J Thromb Haemost 12(1):36–42

    Article  CAS  PubMed  Google Scholar 

  98. Zhang JP, Cheng XX, Zhao M, Li GH, Xu J, Zhang F, Yin MD, Meng FY, Dai XY, Fu YW, Yang ZX (2019) Curing hemophilia A by NHEJ-mediated ectopic F8 insertion in the mouse. Genome Biol 20(1):1–7

    Article  Google Scholar 

  99. Chen H, Shi M, Gilam A, Zheng Q, Zhang Y, Afrikanova I, Li J, Gluzman Z, Jiang R, Kong LJ, Chen-Tsai RY (2019) Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII. Sci Rep 9(1):1–5

    Google Scholar 

  100. Guan Y, Ma Y, Li Q, Sun Z, Ma L, Wu L, Wang L, Zeng L, Shao Y, Chen Y, Ma N (2016) CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med 8(5):477–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sung JJ, Park CY, Leem JW et al (2019) Restoration of FVIII expression by targeted gene insertion in the FVIII locus in hemophilia A patient-derived iPSCs. Exp Mol Med 51:1–9

    Article  CAS  PubMed  Google Scholar 

  102. Hu Z, Zhou M, Wu Y, Li Z, Liu X, Wu L, Liang D (2019) ssODN-mediated in-frame deletion with CRISPR/Cas9 restores FVIII function in hemophilia A-patient-derived iPSCs and ECs. Mol Ther Nucleic Acids 6(17):198–209

    Article  Google Scholar 

  103. Rezaie AR, Giri H (2020) Anticoagulant and signaling functions of antithrombin. J Thromb Haemost 18(12):3142–3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Han JP, Kim M, Choi BS, Lee JH, Lee GS, Jeong M, Lee Y, Kim EA, Oh HK, Go N, Lee H (2022) In vivo delivery of CRISPR-Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy. Sci Adv 8(3):eabj6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hu YF, Fang YH, Lai YR, Feng XQ, Xu SQ (2022) Application of gene therapy in hemophilia. Curr Med Sci 19:1–7

    Google Scholar 

  106. Sun J, Wang J, Zheng D, Hu X (2020) Advances in therapeutic application of CRISPR-Cas9. Brief Funct Genom 19(3):164–174

    Article  CAS  Google Scholar 

  107. Tsai SQ, Joung JK (2016) Defining and improving the genome-wide specificities of CRISPR–Cas9 nucleases. Nat Rev Genet 17(5):300–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ, Church GM (2016) A multifunctional AAV–CRISPR–Cas9 and its host response. Nat Methods 13(10):868–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, Behlke MA (2019) Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 25(2):249–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ferdosi SR, Ewaisha R, Moghadam F, Krishna S, Park JG, Ebrahimkhani MR, Kiani S, Anderson KS (2019) Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun 10(1):1

    Article  CAS  Google Scholar 

  111. Pavani G, Fabiano A, Laurent M, Amor F, Cantelli E, Chalumeau A, Maule G, Tachtsidi A, Concordet JP, Cereseto A, Mavilio F (2021) Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells. Blood Adv 5(5):1137–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li L, Yi H, Liu Z, Long P, Pan T, Huang Y, Li Y, Li Q, Ma Y (2022) Genetic correction of concurrent α-and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology. Stem Cell Res Ther 13(1):102

    Article  PubMed  PubMed Central  Google Scholar 

  113. Cosenza LC, Gasparello J, Romanini N, Zurlo M, Zuccato C, Gambari R, Finotti A (2021) Efficient CRISPR-Cas9-based genome editing of β-globin gene on erythroid cells from homozygous β039-thalassemia patients. Mol Ther Methods Clin Dev 11(21):507–523

    Article  Google Scholar 

  114. Uchida N, Drysdale CM, Nassehi T, Gamer J, Yapundich M, DiNicola J, Shibata Y, Hinds M, Gudmundsdottir B, Haro-Mora JJ, Demirci S (2021) Cas9 protein delivery non-integrating lentiviral vectors for gene correction in sickle cell disease. Mol Ther Methods Clin Dev 11(21):121–132

    Article  Google Scholar 

  115. Li C, Wang H, Georgakopoulou A, Gil S, Yannaki E, Lieber A (2021) In vivo HSC gene therapy using a bi-modular HDAd5/35++ vector cures sickle cell disease in a mouse model. Mol Ther 29(2):822–837

    Article  CAS  PubMed  Google Scholar 

  116. Patel RP, Ghilardi G, Porazzi P, Yang S, Qian D, Pajarillo R, Wang M, Zhang Y, Schuster SJ, Barta SK, Nimmagadda A (2022) Clinical development of Senza5TM CART5: a novel dual population CD5 CRISPR-Cas9 knocked out anti-CD5 chimeric antigen receptor T cell product for relapsed and refractory CD5+ nodal T-cell lymphomas. Blood 140(Supplement 1):1604–1605

    Article  Google Scholar 

  117. Zhang J, Hu Y, Yang J, Li W, Tian Y, Wei G, Zhang L, Zhao K, Qi Y, Tan B, Zhang M (2020) Development and clinical evaluation of non-viral genome specific targeted CAR T cells in relapsed/refractory B-cell non-Hodgkin lymphoma. MedRxiv 23:2020–2009

    Google Scholar 

  118. Vuelta E, Ordoñez JL, Alonso-Pérez V, Méndez L, Hernández-Carabias P, Saldaña R, Sevilla J, Sebastián E, Muntión S, Sánchez-Guijo F, Hernández-Rivas JM (2021) CRISPR-Cas9 technology as a tool to target gene drivers in cancer: proof of concept and new opportunities to treat chronic myeloid leukemia. CRISPR J 4(4):519–535

    Article  PubMed  Google Scholar 

  119. Narimani M, Sharifi M, Jalili A (2019) Knockout of BIRC5 gene by CRISPR/Cas9 induces apoptosis and inhibits cell proliferation in leukemic cell lines, HL60 and KG1. Blood Lymphat Cancer: targets and therapy 27:53–61

    Article  Google Scholar 

  120. Bexte T, Alzubi J, Reindl LM, Wendel P, Schubert R, Salzmann-Manrique E, von Metzler I, Cathomen T, Ullrich E (2022) CRISPR-Cas9 based gene editing of the immune checkpoint NKG2A enhances NK cell mediated cytotoxicity against multiple myeloma. Oncoimmunology 11(1):2081415

    Article  PubMed  PubMed Central  Google Scholar 

  121. Naeimi Kararoudi M, Nagai Y, Elmas E, de Souza Fernandes Pereira M, Ali SA, Imus PH, Wethington D, Borrello IM, Lee DA, Ghiaur G (2020) CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood 136(21):2416–2427

    Article  PubMed  PubMed Central  Google Scholar 

  122. Chen X, Niu X, Liu Y, Zheng R, Yang L, Lu J, Yin S, Wei Y, Pan J, Sayed A, Ma X (2022) Long-term correction of hemophilia B through CRISPR/Cas9 induced homology-independent targeted integration. J Genet Genomics 49(12):1114–1126

  123. Wang Q, Zhong X, Li Q, Su J, Liu Y, Mo L, Deng H, Yang Y (2020) CRISPR-Cas9-mediated in vivo gene integration at the albumin locus recovers hemostasis in neonatal and adult hemophilia B mice. Mol Ther Methods Clin Dev 11(18):520–531

    Article  CAS  Google Scholar 

  124. Wang L, Yang Y, Breton CA, White J, Zhang J, Che Y, Saveliev A, McMenamin D, He Z, Latshaw C, Li M (2019) CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX–knockout mice. Blood J American Soc Hematol 133(26):2745–2752

    CAS  Google Scholar 

  125. Sung JJ, Park S, Choi SH, Kim J, Cho MS, Kim DW (2020) Generation of a gene edited hemophilia A patient-derived iPSC cell line, YCMi001-B-1, by targeted insertion of coagulation factor FVIII using CRISPR/Cas9. Stem Cell Res 1(48):101948

    Article  Google Scholar 

  126. Park CY, Sung JJ, Cho SR, Kim J, Kim DW (2019) Universal correction of blood coagulation factor VIII in patient-derived induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rep 12(6):1242–1249

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The review topic was suggested by ZK and MM. The manuscript idea was reviewed and expanded by AA. Manuscript outlines were laid out by AA. Literature review was done by ZK, MM, AA, and FM. First draft was created by ZK and MM. Subsequent version was produced by AA. Revision and enhancement was done by FM.

Corresponding author

Correspondence to Zakaria Y. Khawaji.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abdulfatah M. Alayoubi and François E. Mercier are co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alayoubi, A.M., Khawaji, Z.Y., Mohammed, M.A. et al. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Ann Hematol 103, 1805–1817 (2024). https://doi.org/10.1007/s00277-023-05457-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05457-2

Keywords

Navigation