Skip to main content

Advertisement

Log in

Heme oxygenase 1 in erythropoiesis: an important regulator beyond catalyzing heme catabolism

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Heme oxygenase 1 (HO-1), encoded by the HMOX-1 gene, is the main heme oxygenase that catalyzes the degradation of heme into iron, carbon monoxide, and biliverdin. HMOX-1 gene expression is stimulated by oxidative stress and regulated at transcriptional and post-transcriptional levels. After translation, subcellular location and protein stability of HO-1 are also altered by different extracellular and intracellular stimuli. HO-1 plays a key role in regulating iron homeostasis and cell protection and has become a new target for disease treatment. Erythropoiesis is a tightly controlled, iron-dependent process that begins with hematopoietic stem cells and maturates to red blood cells. HO-1 is expressed in hematopoietic stem/progenitor cells, hematopoietic niche cells, erythroblasts, and especially erythroblastic island and phagocytic macrophages. HO-1 functions importantly in the entire erythroid development process by influencing hematopoietic stem cell proliferation, erythroid lineage engagement, terminal erythroid differentiation, and even senescent RBC erythrophagocytosis. HO-1 is also related to stress erythropoiesis and certain red blood cell diseases. Elucidation of HO-1 regulation and function in erythropoiesis will be of great significance for the treatment of related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiological reviews 86(2):583–650. https://doi.org/10.1152/physrev.00011.2005

    Article  CAS  PubMed  Google Scholar 

  2. Ryter SW (2021) Heme Oxgenase-1, a cardinal modulator of regulated cell death and inflammation. Cells 10(3):515. https://doi.org/10.3390/cells10030515

  3. Poss KD, Tonegawa S (1997) Reduced stress defense in heme oxygenase 1-deficient cells. Proceedings of the National Academy of Sciences of the United States of America 94(20):10925–10930. https://doi.org/10.1073/pnas.94.20.10925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S (1999) Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. The Journal of clinical investigation 103(1):129–135. https://doi.org/10.1172/JCI4165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Otterbein LE, Bach FH, Alam J, Soares M, Tao LH, Wysk M, Davis RJ, Flavell RA, Choi AM (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nature medicine 6(4):422–428. https://doi.org/10.1038/74680

    Article  CAS  PubMed  Google Scholar 

  6. Brouard S, Otterbein LE, Anrather J, Tobiasch E, Bach FH, Choi AM, Soares MP (2000) Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. The Journal of experimental medicine 192(7):1015–1026. https://doi.org/10.1084/jem.192.7.1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Faller S, Hoetzel A (2012) Carbon monoxide in acute lung injury. Current pharmaceutical biotechnology 13(6):777–786. https://doi.org/10.2174/138920112800399185

    Article  CAS  PubMed  Google Scholar 

  8. Magierowska K, Brzozowski T, Magierowski M (2018) Emerging role of carbon monoxide in regulation of cellular pathways and in the maintenance of gastric mucosal integrity. Pharmacological research 129:56–64. https://doi.org/10.1016/j.phrs.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  9. Facchinetti MM (2020) Heme-Oxygenase-1. Antioxid Redox Signal 32(17):1239–1242. https://doi.org/10.1089/ars.2020.8065

    Article  CAS  PubMed  Google Scholar 

  10. Tavitian A, Cressatti M, Song W, Turk AZ, Galindez C, Smart A, Liberman A, Schipper HM (2020) Strategic Timing of Glial HMOX1 Expression Results in Either Schizophrenia-Like or Parkinsonian Behavior in Mice. Antioxid Redox Signal 32(17):1259–1272. https://doi.org/10.1089/ars.2019.7937

    Article  CAS  PubMed  Google Scholar 

  11. Schipper HM, Song W, Tavitian A, Cressatti M (2019) The sinister face of heme oxygenase-1 in brain aging and disease. Prog Neurobiol 172:40–70. https://doi.org/10.1016/j.pneurobio.2018.06.008

    Article  CAS  PubMed  Google Scholar 

  12. Adedoyin O, Boddu R, Traylor A, Lever JM, Bolisetty S, George JF, Agarwal A (2018) Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. American journal of physiology. Renal physiology 314(5):F702–F714. https://doi.org/10.1152/ajprenal.00044.2017

    Article  CAS  PubMed  Google Scholar 

  13. Chang LC, Chiang SK, Chen SE, Yu YL, Chou RH, Chang WC (2018) Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer letters 416:124–137. https://doi.org/10.1016/j.canlet.2017.12.025

    Article  CAS  PubMed  Google Scholar 

  14. Chiang SK, Chen SE, Chang LC (2018) A dual role of Heme Oxygenase-1 in cancer cells. Int J Mol Sci 20(1):39. https://doi.org/10.3390/ijms20010039

  15. Kwon MY, Park E, Lee SJ, Chung SW (2015) Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 6(27):24393–24403. https://doi.org/10.18632/oncotarget.5162

    Article  PubMed  PubMed Central  Google Scholar 

  16. Landis RC, Quimby KR, Greenidge AR (2018) M1/M2 Macrophages in Diabetic Nephropathy: Nrf2/HO-1 as Therapeutic Targets. Current pharmaceutical design 24(20):2241–2249. https://doi.org/10.2174/1381612824666180716163845

    Article  CAS  PubMed  Google Scholar 

  17. Che J, Yang J, Zhao B, Shang P (2021) HO-1: A new potential therapeutic target to combat osteoporosis. European journal of pharmacology 906:174219. https://doi.org/10.1016/j.ejphar.2021.174219

    Article  CAS  PubMed  Google Scholar 

  18. Consonni FM, Bleve A, Totaro MG, Storto M, Kunderfranco P, Termanini A, Pasqualini F, Ali C, Pandolfo C, Sgambelluri F, Grazia G, Santinami M, Maurichi A, Milione M, Erreni M, Doni A, Fabbri M, Gribaldo L, Rulli E et al (2021) Heme catabolism by tumor-associated macrophages controls metastasis formation. Nature immunology 22(5):595–606. https://doi.org/10.1038/s41590-021-00921-5

    Article  CAS  PubMed  Google Scholar 

  19. Lou JS, Zhao LP, Huang ZH, Chen XY, Xu JT, Tai WC, Tsim KWK, Chen YT, Xie T (2021) Ginkgetin derived from Ginkgo biloba leaves enhances the therapeutic effect of cisplatin via ferroptosis-mediated disruption of the Nrf2/HO-1 axis in EGFR wild-type non-small-cell lung cancer. Phytomedicine : international journal of phytotherapy and phytopharmacology 80:153370. https://doi.org/10.1016/j.phymed.2020.153370

    Article  CAS  PubMed  Google Scholar 

  20. Tang Z, Ju Y, Dai X, Ni N, Liu Y, Zhang D, Gao H, Sun H, Zhang J, Gu P (2021) HO-1-mediated ferroptosis as a target for protection against retinal pigment epithelium degeneration. Redox biology 43:101971. https://doi.org/10.1016/j.redox.2021.101971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Gao L, Chen J, Li Q, Huo L, Wang Y, Wang H, Du J (2021) Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson's Disease. Frontiers in pharmacology 12:757161. https://doi.org/10.3389/fphar.2021.757161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pittala V, Salerno L, Romeo G, Modica MN, Siracusa MA (2013) A focus on heme oxygenase-1 (HO-1) inhibitors. Current medicinal chemistry 20(30):3711–3732. https://doi.org/10.2174/0929867311320300003

    Article  CAS  PubMed  Google Scholar 

  23. Chernov VM, Chernova OA, Mouzykantov AA, Lopukhov LV, Trushin MV (2018) Mycoplasmas and Novel HO-1 Inducers: Recent Advances. Current pharmaceutical design 24(20):2236–2240. https://doi.org/10.2174/1381612824666180716170128

    Article  CAS  PubMed  Google Scholar 

  24. Poss KD, Tonegawa S (1997) Heme oxygenase 1 is required for mammalian iron reutilization. Proceedings of the National Academy of Sciences of the United States of America 94(20):10919–10924. https://doi.org/10.1073/pnas.94.20.10919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chau LY (2015) Heme oxygenase-1: emerging target of cancer therapy. J Biomed Sci 22(1):22. https://doi.org/10.1186/s12929-015-0128-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garcia-Santos D, Hamdi A, Saxova Z, Fillebeen C, Pantopoulos K, Horvathova M, Ponka P (2018) Inhibition of heme oxygenase ameliorates anemia and reduces iron overload in a β-thalassemia mouse model. Blood 131(2):236–246. https://doi.org/10.1182/blood-2017-07-798728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abraham NG, Kappas A (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 60(1):79–127. https://doi.org/10.1124/pr.107.07104

    Article  CAS  PubMed  Google Scholar 

  28. Shibahara S, Müller RM, Taguchi H (1987) Transcriptional control of rat heme oxygenase by heat shock. J Biol Chem 262(27):12889–12892

    Article  CAS  PubMed  Google Scholar 

  29. Kutty RK, Kutty G, Rodriguez IR, Chader GJ, Wiggert B (1994) Chromosomal localization of the human heme oxygenase genes: heme oxygenase-1 (HMOX1) maps to chromosome 22q12 and heme oxygenase-2 (HMOX2) maps to chromosome 16p13.3. Genomics 20(3):513–516. https://doi.org/10.1006/geno.1994.1213

    Article  CAS  PubMed  Google Scholar 

  30. Wu J, Li S, Li C, Cui L, Ma J, Hui Y (2021) The non-canonical effects of heme oxygenase-1, a classical fighter against oxidative stress. Redox Biol 47:102170. https://doi.org/10.1016/j.redox.2021.102170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sass G, Leukel P, Schmitz V, Raskopf E, Ocker M, Neureiter D, Meissnitzer M, Tasika E, Tannapfel A, Tiegs G (2008) Inhibition of heme oxygenase 1 expression by small interfering RNA decreases orthotopic tumor growth in livers of mice. Int J Cancer 123(6):1269–1277. https://doi.org/10.1002/ijc.23695

    Article  CAS  PubMed  Google Scholar 

  32. Miyake M, Fujimoto K, Anai S, Ohnishi S, Kuwada M, Nakai Y, Inoue T, Matsumura Y, Tomioka A, Ikeda T, Tanaka N, Hirao Y (2011) Heme oxygenase-1 promotes angiogenesis in urothelial carcinoma of the urinary bladder. Oncol Rep 25(3):653–660. https://doi.org/10.3892/or.2010.1125

    Article  CAS  PubMed  Google Scholar 

  33. Ogawa K, Sun J, Taketani S, Nakajima O, Nishitani C, Sassa S, Hayashi N, Yamamoto M, Shibahara S, Fujita H, Igarashi K (2001) Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. Embo j 20(11):2835–2843. https://doi.org/10.1093/emboj/20.11.2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen YH, Lin SJ, Lin MW, Tsai HL, Kuo SS, Chen JW, Charng MJ, Wu TC, Chen LC, Ding YA, Pan WH, Jou YS, Chau LY (2002) Microsatellite polymorphism in promoter of heme oxygenase-1 gene is associated with susceptibility to coronary artery disease in type 2 diabetic patients. Hum Genet 111(1):1–8. https://doi.org/10.1007/s00439-002-0769-4

    Article  CAS  PubMed  Google Scholar 

  35. Funes SC, Rios M, Fernández-Fierro A, Covián C, Bueno SM, Riedel CA, Mackern-Oberti JP, Kalergis AM (2020) Naturally Derived Heme-Oxygenase 1 Inducers and Their Therapeutic Application to Immune-Mediated Diseases. Front Immunol 11:1467. https://doi.org/10.3389/fimmu.2020.01467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gu XY, Jin B, Qi ZD, Yin XF (2022) MicroRNA is a potential target for therapies to improve the physiological function of skeletal muscle after trauma. Neural Regen Res 17(7):1617–1622. https://doi.org/10.4103/1673-5374.330620

    Article  PubMed  Google Scholar 

  37. Zhao L, Qi Y, Xu L, Tao X, Han X, Yin L, Peng J (2019) Corrigendum to "MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2" [Redox Biol. 15 (2018) 284-296]. Redox Biol 26:101289. https://doi.org/10.1016/j.redox.2019.101289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang P, Liang X, Lu Y, Zhao X, Liang J (2016) MicroRNA-93 Downregulation Ameliorates Cerebral Ischemic Injury Through the Nrf2/HO-1 Defense Pathway. Neurochem Res 41(10):2627–2635. https://doi.org/10.1007/s11064-016-1975-0

    Article  CAS  PubMed  Google Scholar 

  39. Pu M, Li C, Qi X, Chen J, Wang Y, Gao L, Miao L, Ren J (2017) MiR-1254 suppresses HO-1 expression through seed region-dependent silencing and non-seed interaction with TFAP2A transcript to attenuate NSCLC growth. PLoS genetics 13(7):e1006896. https://doi.org/10.1371/journal.pgen.1006896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim HP, Wang X, Galbiati F, Ryter SW, Choi AM (2004) Caveolae compartmentalization of heme oxygenase-1 in endothelial cells. Faseb j 18(10):1080–1089. https://doi.org/10.1096/fj.03-1391com

    Article  CAS  PubMed  Google Scholar 

  41. Schaefer B, Moriishi K, Behrends S (2017) Insights into the mechanism of isoenzyme-specific signal peptide peptidase-mediated translocation of heme oxygenase. PLoS One 12(11):e0188344. https://doi.org/10.1371/journal.pone.0188344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin Q, Weis S, Yang G, Weng YH, Helston R, Rish K, Smith A, Bordner J, Polte T, Gaunitz F, Dennery PA (2007) Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem 282(28):20621–20633. https://doi.org/10.1074/jbc.M607954200

    Article  CAS  PubMed  Google Scholar 

  43. Jagadeesh ASV, Fang X, Kim SH, Guillen-Quispe YN, Zheng J, Surh YJ, Kim SJ (2022) Non-canonical vs. Canonical Functions of Heme Oxygenase-1 in Cancer. Journal of cancer prevention 27(1):7–15. https://doi.org/10.15430/JCP.2022.2

    Article  PubMed  PubMed Central  Google Scholar 

  44. Converso DP, Taillé C, Carreras MC, Jaitovich A, Poderoso JJ, Boczkowski J (2006) HO-1 is located in liver mitochondria and modulates mitochondrial heme content and metabolism. Faseb j 20(8):1236–1238. https://doi.org/10.1096/fj.05-4204fje

    Article  CAS  PubMed  Google Scholar 

  45. Bansal S, Biswas G, Avadhani NG (2014) Mitochondria-targeted heme oxygenase-1 induces oxidative stress and mitochondrial dysfunction in macrophages, kidney fibroblasts and in chronic alcohol hepatotoxicity. Redox Biol 2:273–283. https://doi.org/10.1016/j.redox.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  46. Lin PH, Chiang MT, Chau LY (2008) Ubiquitin-proteasome system mediates heme oxygenase-1 degradation through endoplasmic reticulum-associated degradation pathway. Biochimica et biophysica acta 1783(10):1826–1834. https://doi.org/10.1016/j.bbamcr.2008.05.008

    Article  CAS  PubMed  Google Scholar 

  47. Kovacsics CE, Gill AJ, Ambegaokar SS, Gelman BB, Kolson DL (2017) Degradation of heme oxygenase-1 by the immunoproteasome in astrocytes: A potential interferon-gamma-dependent mechanism contributing to HIV neuropathogenesis. Glia 65(8):1264–1277. https://doi.org/10.1002/glia.23160

    Article  PubMed  PubMed Central  Google Scholar 

  48. Boname JM, Bloor S, Wandel MP, Nathan JA, Antrobus R, Dingwell KS, Thurston TL, Smith DL, Smith JC, Randow F, Lehner PJ (2014) Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins. The Journal of cell biology 205(6):847–862. https://doi.org/10.1083/jcb.201312009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hsu FF, Yeh CT, Sun YJ, Chiang MT, Lan WM, Li FA, Lee WH, Chau LY (2015) Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity. Oncogene 34(18):2360–2370. https://doi.org/10.1038/onc.2014.166

    Article  CAS  PubMed  Google Scholar 

  50. Lin PH, Lan WM, Chau LY (2013) TRC8 suppresses tumorigenesis through targeting heme oxygenase-1 for ubiquitination and degradation. Oncogene 32(18):2325–2334. https://doi.org/10.1038/onc.2012.244

    Article  CAS  PubMed  Google Scholar 

  51. Chillappagari S, Belapurkar R, Möller A, Molenda N, Kracht M, Rohrbach S, Schmitz ML (2020) SIAH2-mediated and organ-specific restriction of HO-1 expression by a dual mechanism. Sci Rep 10(1):2268. https://doi.org/10.1038/s41598-020-59005-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Evstatiev R, Gasche C (2012) Iron sensing and signalling. Gut 61(6):933–952. https://doi.org/10.1136/gut.2010.214312

    Article  CAS  PubMed  Google Scholar 

  53. Cao YA, Kusy S, Luong R, Wong RJ, Stevenson DK, Contag CH (2011) Heme oxygenase-1 deletion affects stress erythropoiesis. PloS one 6(5):e20634. https://doi.org/10.1371/journal.pone.0020634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suttner DM, Dennery PA (1999) Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 13(13):1800–1809. https://doi.org/10.1096/fasebj.13.13.1800

    Article  CAS  PubMed  Google Scholar 

  55. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature reviews. Drug discovery 8(7):579–591. https://doi.org/10.1038/nrd2803

    Article  CAS  PubMed  Google Scholar 

  56. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Molecular and cellular biochemistry 345(1-2):91–104. https://doi.org/10.1007/s11010-010-0563-x

    Article  CAS  PubMed  Google Scholar 

  57. Lee TY, Muniandy L, Teh LK, Abdullah M, George E, Sathar J, Lai MI (2016) Correlation of BACH1 and Hemoglobin E/Beta-Thalassemia Globin Expression. Turk J Haematol 33(1):15–20. https://doi.org/10.4274/tjh.2014.0197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vijayan V, Wagener F, Immenschuh S (2018) The macrophage heme-heme oxygenase-1 system and its role in inflammation. Biochem Pharmacol 153:159–167. https://doi.org/10.1016/j.bcp.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  59. Dunn LL, Midwinter RG, Ni J, Hamid HA, Parish CR, Stocker R (2014) New insights into intracellular locations and functions of heme oxygenase-1. Antioxidants & redox signaling 20(11):1723–1742. https://doi.org/10.1089/ars.2013.5675

    Article  CAS  Google Scholar 

  60. Liu B, Qian JM (2015) Cytoprotective role of heme oxygenase-1 in liver ischemia reperfusion injury. Int J Clin Exp Med 8(11):19867–19873

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Narla A, Mohandas N (2015) Jekyll and Hyde: the role of heme oxygenase-1 in erythroid biology. Haematologica 100(5):567–568. https://doi.org/10.3324/haematol.2015.124982

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen-Roetling J, Kamalapathy P, Cao Y, Song W, Schipper HM, Regan RF (2017) Astrocyte heme oxygenase-1 reduces mortality and improves outcome after collagenase-induced intracerebral hemorrhage. Neurobiol Dis 102:140–146. https://doi.org/10.1016/j.nbd.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nitti M, Piras S, Marinari UM, Moretta L, Pronzato MA, and Furfaro AL (2017) HO-1 induction in cancer progression: a matter of cell adaptation. Antioxidants (Basel) 6(2):29. https://doi.org/10.3390/antiox6020029.

  64. Kapturczak MH, Wasserfall C, Brusko T, Campbell-Thompson M, Ellis TM, Atkinson MA, Agarwal A (2004) Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am J Pathol 165(3):1045–1053. https://doi.org/10.1016/s0002-9440(10)63365-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Palis J (2014) Primitive and definitive erythropoiesis in mammals. Front Physiol 5:3. https://doi.org/10.3389/fphys.2014.00003

  66. Ibrahim NG, Lutton JD, Levere RD (1982) The role of haem biosynthetic and degradative enzymes in erythroid colony development: the effect of haemin. British journal of haematology 50(1):17–28. https://doi.org/10.1111/j.1365-2141.1982.tb01886.x

    Article  CAS  PubMed  Google Scholar 

  67. Abraham NG (1991) Molecular regulation--biological role of heme in hematopoiesis. Blood reviews 5(1):19–28. https://doi.org/10.1016/0268-960x(91)90004-v

    Article  CAS  PubMed  Google Scholar 

  68. Szade A, Szade K, Mahdi M, Jozkowicz A (2021) The role of heme oxygenase-1 in hematopoietic system and its microenvironment. Cellular and molecular life sciences : CMLS 78(10):4639–4651. https://doi.org/10.1007/s00018-021-03803-z

    Article  CAS  PubMed  Google Scholar 

  69. Zhang Q, Liu J, Duan H, Li R, Peng W, Wu C (2021) Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. Journal of advanced research 34:43–63. https://doi.org/10.1016/j.jare.2021.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Boulais PE, Frenette PS (2015) Making sense of hematopoietic stem cell niches. Blood 125(17):2621–2629. https://doi.org/10.1182/blood-2014-09-570192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cao YA, Wagers AJ, Karsunky H, Zhao H, Reeves R, Wong RJ, Stevenson DK, Weissman IL, Contag CH (2008) Heme oxygenase-1 deficiency leads to disrupted response to acute stress in stem cells and progenitors. Blood 112(12):4494–4502. https://doi.org/10.1182/blood-2007-12-127621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Szade K, Zukowska M, Szade A, Nowak W, Skulimowska I, Ciesla M, Bukowska-Strakova K, Gulati GS, Kachamakova-Trojanowska N, Kusienicka A, Einwallner E, Kijowski J, Czauderna S, Esterbauer H, Benes V, LW I, Dulak J, Jozkowicz A (2020) Heme oxygenase-1 deficiency triggers exhaustion of hematopoietic stem cells. EMBO reports 21(2):e47895. https://doi.org/10.15252/embr.201947895

    Article  CAS  PubMed  Google Scholar 

  73. So AY, Garcia-Flores Y, Minisandram A, Martin A, Taganov K, Boldin M, Baltimore D (2012) Regulation of APC development, immune response, and autoimmunity by Bach1/HO-1 pathway in mice. Blood 120(12):2428–2437. https://doi.org/10.1182/blood-2012-04-426247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334. https://doi.org/10.1038/nature12984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Soares MP, Seldon MP, Gregoire IP, Vassilevskaia T, Berberat PO, Yu J, Tsui TY, Bach FH (2004) Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. Journal of immunology 172(6):3553–3563. https://doi.org/10.4049/jimmunol.172.6.3553

    Article  CAS  Google Scholar 

  76. Bessis MC, Breton-Gorius J (1962) Iron metabolism in the bone marrow as seen by electron microscopy: a critical review. Blood 19:635–663

    Article  CAS  PubMed  Google Scholar 

  77. Jacobsen RN, Forristal CE, Raggatt LJ, Nowlan B, Barbier V, Kaur S, van Rooijen N, Winkler IG, Pettit AR, Levesque JP (2014) Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80(+)VCAM1(+)CD169(+)ER-HR3(+)Ly6G(+) erythroid island macrophages in the mouse. Experimental hematology 42(7):547–561 e544. https://doi.org/10.1016/j.exphem.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  78. Klei TR, Meinderts SM, van den Berg TK, van Bruggen R (2017) From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis. Frontiers in immunology 8:73. https://doi.org/10.3389/fimmu.2017.00073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fraser ST, Midwinter RG, Coupland LA, Kong S, Berger BS, Yeo JH, Andrade OC, Cromer D, Suarna C, Lam M, Maghzal GJ, Chong BH, Parish CR, Stocker R (2015) Heme oxygenase-1 deficiency alters erythroblastic island formation, steady-state erythropoiesis and red blood cell lifespan in mice. Haematologica 100(5):601–610. https://doi.org/10.3324/haematol.2014.116368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim KS, Zhang DL, Kovtunovych G, Ghosh MC, Ollivierre H, Eckhaus MA, Rouault TA (2018) Infused wild-type macrophages reside and self-renew in the liver to rescue the hemolysis and anemia of Hmox1-deficient mice. Blood advances 2(20):2732–2743. https://doi.org/10.1182/bloodadvances.2018019737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McGrath KE, Kingsley PD, Koniski AD, Porter RL, Bushnell TP, Palis J (2008) Enucleation of primitive erythroid cells generates a transient population of "pyrenocytes" in the mammalian fetus. Blood 111(4):2409–2417. https://doi.org/10.1182/blood-2007-08-107581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li W, Wang Y, Zhao H, Zhang H, Xu Y, Wang S, Guo X, Huang Y, Zhang S, Han Y, Wu X, Rice CM, Huang G, Gallagher PG, Mendelson A, Yazdanbakhsh K, Liu J, Chen L, An X (2019) Identification and transcriptome analysis of erythroblastic island macrophages. Blood 134(5):480–491. https://doi.org/10.1182/blood.2019000430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schroit AJ, Madsen JW, Tanaka Y (1985) In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes. The Journal of biological chemistry 260(8):5131–5138

    Article  CAS  PubMed  Google Scholar 

  84. de Oliveira J, Denadai MB, Costa DL (2022) Crosstalk between Heme Oxygenase-1 and iron metabolism in macrophages: implications for the modulation of inflammation and immunity. Antioxidants 11(5):861. https://doi.org/10.3390/antiox11050861

  85. Fraser ST, Midwinter RG, Berger BS, Stocker R (2011) Heme Oxygenase-1: A Critical Link between Iron Metabolism, Erythropoiesis, and Development. Advances in hematology 2011:473709. https://doi.org/10.1155/2011/473709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kovtunovych G, Eckhaus MA, Ghosh MC, Ollivierre-Wilson H, Rouault TA (2010) Dysfunction of the heme recycling system in heme oxygenase 1-deficient mice: effects on macrophage viability and tissue iron distribution. Blood 116(26):6054–6062. https://doi.org/10.1182/blood-2010-03-272138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Garcia-Santos D, Schranzhofer M, Horvathova M, Jaberi MM, Bogo Chies JA, Sheftel AD, Ponka P (2014) Heme oxygenase 1 is expressed in murine erythroid cells where it controls the level of regulatory heme. Blood 123(14):2269–2277. https://doi.org/10.1182/blood-2013-04-496760

    Article  CAS  PubMed  Google Scholar 

  88. Ulich TR, del Castillo J, Yin S (1990) Tumor necrosis factor exerts dose-dependent effects on erythropoiesis and myelopoiesis in vivo. Experimental hematology 18(4):311–315

    CAS  PubMed  Google Scholar 

  89. Drechsler Y, Dolganiuc A, Norkina O, Romics L, Li W, Kodys K, Bach FH, Mandrekar P, Szabo G (2006) Heme oxygenase-1 mediates the anti-inflammatory effects of acute alcohol on IL-10 induction involving p38 MAPK activation in monocytes. Journal of immunology 177(4):2592–2600. https://doi.org/10.4049/jimmunol.177.4.2592

    Article  CAS  Google Scholar 

  90. Akgul B, Lin KW, Ou Yang HM, Chen YH, Lu TH, Chen CH, Kikuchi T, Chen YT, Tu CP (2010) Garlic accelerates red blood cell turnover and splenic erythropoietic gene expression in mice: evidence for erythropoietin-independent erythropoiesis. PloS one 5(12):e15358. https://doi.org/10.1371/journal.pone.0015358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Navas TA, Mohindru M, Estes M, Ma JY, Sokol L, Pahanish P, Parmar S, Haghnazari E, Zhou L, Collins R, Kerr I, Nguyen AN, Xu Y, Platanias LC, List AA, Higgins LS, Verma A (2006) Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors. Blood 108(13):4170–4177. https://doi.org/10.1182/blood-2006-05-023093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Garcia-Santos D, Hamdi A, Saxova Z, Fillebeen C, Pantopoulos K, Horvathova M, Ponka P (2018) Inhibition of heme oxygenase ameliorates anemia and reduces iron overload in a beta-thalassemia mouse model. Blood 131(2):236–246. https://doi.org/10.1182/blood-2017-07-798728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gardenghi S, Grady RW, Rivella S (2010) Anemia, ineffective erythropoiesis, and hepcidin: interacting factors in abnormal iron metabolism leading to iron overload in beta-thalassemia. Hematology/oncology clinics of North America 24(6):1089–1107. https://doi.org/10.1016/j.hoc.2010.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rivella S (2019) Iron metabolism under conditions of ineffective erythropoiesis in beta-thalassemia. Blood 133(1):51–58. https://doi.org/10.1182/blood-2018-07-815928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kawashima A, Oda Y, Yachie A, Koizumi S, Nakanishi I (2002) Heme oxygenase-1 deficiency: the first autopsy case. Human pathology 33(1):125–130. https://doi.org/10.1053/hupa.2002.30217

    Article  PubMed  Google Scholar 

  96. Yachie A (2021) Heme Oxygenase-1 deficiency and oxidative stress: a review of 9 independent human cases and animal models. Int J Mol Sci 22(4):1514. https://doi.org/10.3390/ijms22041514

  97. Inoue R, Irie Y, Akagi R (2021) Role of heme oxygenase-1 in human placenta on iron supply to fetus. Placenta 103:53–58. https://doi.org/10.1016/j.placenta.2020.09.065

    Article  CAS  PubMed  Google Scholar 

  98. Watanabe S, Akagi R, Mori M, Tsuchiya T, Sassa S (2004) Marked developmental changes in heme oxygenase-1 (HO-1) expression in the mouse placenta: correlation between HO-1 expression and placental development. Placenta 25(5):387–395. https://doi.org/10.1016/j.placenta.2003.10.012

    Article  CAS  PubMed  Google Scholar 

  99. Watanabe T, Hasegawa G, Yamamoto T, Hatakeyama K, Suematsu M, Naito M (2003) Expression of heme oxygenase-1 in rat ontogeny. Archives of histology and cytology 66(2):155–162. https://doi.org/10.1679/aohc.66.155

    Article  CAS  PubMed  Google Scholar 

  100. Baron MH, Isern J, Fraser ST (2012) The embryonic origins of erythropoiesis in mammals. Blood 119(21):4828–4837. https://doi.org/10.1182/blood-2012-01-153486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McGrath K, Palis J (2008) Ontogeny of erythropoiesis in the mammalian embryo. Current topics in developmental biology 82:1–22. https://doi.org/10.1016/S0070-2153(07)00001-4

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grants from Key Research and Development Program of Hunan Province (CN, 2022SK2037), and Natural Science Foundation of Hunan Province (CN, 2021JJ30892).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyong Chen.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Zhang, X., Nie, L. et al. Heme oxygenase 1 in erythropoiesis: an important regulator beyond catalyzing heme catabolism. Ann Hematol 102, 1323–1332 (2023). https://doi.org/10.1007/s00277-023-05193-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05193-7

Keywords

Navigation