Skip to main content

Advertisement

Log in

Composition of encephalic arteries and origin of the basilar artery are different between vertebrates

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Intracranial arterial anatomy is lacking for most mammalian and non-mammalian model species, especially concerning the origin of the basilar artery (BA). Enhancing the knowledge of this anatomy can improve animal models and help understanding anatomical variations in humans. We have studied encephalic arteries in three different species of birds and eight different species of mammals using formalin-fixed brains injected with arterial red latex. Our results and literature analysis indicate that, for all vertebrates, the internal carotid artery (ICA) supplies the brain and divides into two branches: a cranial and a caudal branch. The difference between vertebrates lies in the caudal branch of the ICA. For non-mammalian, the caudal branch is the origin of the BA, and the vertebral artery (VA) is not involved in brain supply. For mammals, the VA supplies encephalic arteries in two different ways. In the first type of organization, mostly found in ungulates, the carotid rete mirabile supplies the encephalic arteries, the caudal branch is the origin of the BA, and the VA is indirectly involved in carotid rete mirabile blood supply. The second type of encephalic artery organization for mammals is the same as in humans. The caudal branch of the ICA serves as the posterior communicating artery, and the BA originates from both VAs. We believe that knowledge of comparative anatomy of encephalic arteries contributes to a better understanding of animal models applicable to surgical or radiological techniques. It improves the understanding of rare encephalic variations that may be present in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5 
Fig. 6

Similar content being viewed by others

Availability of data and materials

Datasets can be accessed by contacting celine.salaud@chu-nantes.fr.

References

  1. Almeida L, Campos R (2011) A systematic study of the brain base arteries inbroad-snouted caiman (Caiman latirostris). Braz J Morphol Sci 28(1):62–68

    Google Scholar 

  2. Araki Y, Imai S, Saitoh A, Ito T, Shimizu K, Yamada H (1986) A case of carotid rete mirabile associated with pseudoxanthoma elasticum: a case report. No To Shinkei 38(5):495–500

    CAS  PubMed  Google Scholar 

  3. Aydin A, Yilmaz S, Ozkan ZE, Ilgün R (2008) Morphological investigations on the circulus arteriosus cerebri in mole-rats (Spalax leucodon). Anat Histol Embryol 37(3):219–222

    Article  CAS  PubMed  Google Scholar 

  4. Al Aiyan A, Menon P, AlDarwich A, Almuhairi F, Alnuaimi S, Bulshawareb A (2019) Descriptive analysis of cerebral arterial vascular architecture in dromedary camel (Camelus dromedarius). Front Neuroanat 13:67

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baldwin BA, Bell FR (1963) The anatomy of the cerebral circulation of the sheep and ox. The dynamic distribution of the blood supplied by the carotid and vertebral arteries to cranial regions. J Anat 97(Pt2):203–215

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Baumel Julian J, King Anthony S, Breazile James E, Evans Howard E, Vanden Berge James C (1993) Handbook of avian anatomy: Nomina anatomica avium, 2nd edn. Massachusetts, Cambridge

    Google Scholar 

  7. Caldemeyer KS, Carrico JB, Mathews VP (1998) The radiology and embryology of anomalous arteries of the head and neck. AJR Am J Roentgenol 170(1):197–203

    Article  CAS  PubMed  Google Scholar 

  8. Depedrini JS, Campos R (2003) A systematic study of the brain base arteries in the pampas fox (dusicyon gymnocercus). Braz J Morphol Sci 20(3):181–188

    Google Scholar 

  9. FIPAT (2011) Terminologia anatomica: international anatomical terminology, 2nd edn. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  10. Firbas W, Sinzinger H, Schlemmer M (2007) Über den Circulus arteriosus bei Ratte, Maus und Goldhamster. Anat Histol Embryol 28(2):243–251

    Google Scholar 

  11. Frackowiak H (1989) The rete mirabile of the maxillary artery of the lion (Panthera leo, L. 1758). Anat Histol Embryol 18(4):342–348

    Article  CAS  PubMed  Google Scholar 

  12. Gillan LA (1972) Blood supply to primitive mammalian brains. J Comp Neurol 145(2):209–221

    Article  Google Scholar 

  13. Gillan LA (1974) Blood supply to brains of ungulates with and without a rete mirabile caroticum. J Comp Neurol 153(3):275–290

    Article  CAS  PubMed  Google Scholar 

  14. Haynes MJ (2002) Vertebral arteries and cervical movement: Doppler ultrasound velocimetry for screening before manipulation. J Manipulative Physiol Ther 25(9):556–567

    Article  PubMed  Google Scholar 

  15. Hitier M, Zhang M, Labrousse M, Barbier C, Patron V, Moreau S (2013) Persistent stapedial arteries in human: from phylogeny to surgical consequences. Surg Radiol Anat SRA 35(10):883–891

    Article  PubMed  Google Scholar 

  16. Holmes RL, Newman PP, Wolstencroft JH (1958) The distribution of carotid and vertebral blood in the brain of the cat. J Physiol 140(2):236–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hutting N, Verhagen AP, Vijverman V, Keesenberg MDM, Dixon G, Scholten-Peeters GGM (2013) Diagnostic accuracy of premanipulative vertebrobasilar insufficiency tests: a systematic review. Man Ther 18(3):177–182

    Article  PubMed  Google Scholar 

  18. Itoyama Y, Kitano I, Ushio Y (1993) Carotid and vertebral rete mirabile in man–case report. Neurol Med Chir (Tokyo) 33(3):181–184

    Article  CAS  PubMed  Google Scholar 

  19. Kapoor K, Kak VK, Singh B (2003) Morphology and comparative anatomy of circulus arteriosus cerebri in mammals. Anat Histol Embryol 32(6):347–355

    Article  CAS  PubMed  Google Scholar 

  20. Karasawa J, Touho H, Ohnishi H, Kawaguchi M (1997) Rete mirabile in humans–case report. Neurol Med Chir (Tokyo) 37(2):188–192

    Article  CAS  PubMed  Google Scholar 

  21. Lasjaunias P, Théron J, Moret J (1978) The occipital artery: anatomy-normal arteriographic aspects-embryological significance. Neuroradiology 15(1):31–37

    Article  CAS  PubMed  Google Scholar 

  22. Levine JM, Levine GJ, Hoffman AG, Bratton G (2008) Comparative anatomy of the horse, ox, and dog: the brain and associated vessels. Equine Compend Contin Educ Pract Vet 3:153–164

    Google Scholar 

  23. Lin E, Linfante I, Dabus G (2013) Unilateral rete mirabile as a result of segmental agenesis of the ascending petrous segment of the internal carotid artery: embryology, differential diagnosis and clinical implications. Interv Neuroradiol J Peritherapeutic Neuroradiol Surg Proced Relat Neurosci 19(1):73–77

    CAS  Google Scholar 

  24. Mahadevan J, Batista L, Alvarez H, Bravo-Castro E, Lasjaunias P (2004) Bilateral segmental regression of the carotid and vertebral arteries with rete compensation in a western patient. Neuroradiology 46(6):444–449

    Article  CAS  PubMed  Google Scholar 

  25. Meckel JF, Riester FJ, Sanson A, Schuster T, London KC (1828) Traité général d’anatomie comparée. Villeret, Paris, p 664

    Book  Google Scholar 

  26. Mitchell G, Lust A (2008) The carotid rete and artiodactyl success. Biol Lett 4(4):415–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mitchell J (2008) Is mechanical deformation of the suboccipital vertebral artery during cervical spine rotation responsible for vertebrobasilar insufficiency? Physiother Res Int J Res Clin Phys Ther 13(1):53–66

    Article  Google Scholar 

  28. ICVGAN (2017) Nomina anatomica veterina, 6th edn. Editorial Committee Hanover, Germany

    Google Scholar 

  29. Padget DH (1954) Designation of the embryonic intersegmental arteries in reference to the vertebral artery and subclavian stem. Anat Rec 119(3):349–356

    Article  CAS  PubMed  Google Scholar 

  30. Padget DH (1948) The development of the cranial arteries in the human embryo. Contrib Embryol. 32:205–262

    Google Scholar 

  31. Rahmat S, Gilland E (2014) Comparative anatomy of the carotid-basilar arterial trunk and hindbrain penetrating arteries in vertebrates. Open Anat J 6(1):1–26

    Article  Google Scholar 

  32. Rahmat S, Gilland E (2019) Hindbrain neurovascular anatomy of adult goldfish (Carassius auratus). J Anat 235(4):783–793

    Article  PubMed  PubMed Central  Google Scholar 

  33. Reimann C, Lluch S, Glick G (1972) Development and evaluation of an experimental model for the study of the cerebral circulation in the unanesthetized goat. Stroke 3(3):322–328

    Article  CAS  PubMed  Google Scholar 

  34. Rerkamnuaychoke W, Ohsawa K, Kurohmaru M, Hayashi Y, Nishida T (1994) The evidence of carotid body in the carotid rete of the shiba goat. Anat Histol Embryol 23(2):137–147

    Article  CAS  PubMed  Google Scholar 

  35. Sahin H, Cinar C, Oran I (2010) Carotid and vertebrobasilar rete mirabile: a case report. Surg Radiol Anat SRA 32(2):95–98

    Article  PubMed  Google Scholar 

  36. Turk Y, Alicioglu B (2019) Unilateral cervical and petrosal segment agenesis of the internal carotid artery with rete mirabile. Clin Imaging 57:25–29

    Article  PubMed  Google Scholar 

  37. Uchino A, Tokushige K (2022) Type 2 left proatlantal artery with normal left vertebral artery and association with an aberrant right subclavian artery and a bi-carotid trunk. Surg Radiol Anat 44:419–421

    Article  PubMed  Google Scholar 

  38. Vasović L, Trandafilović M, Vlajković S, Djordjević G, Daković-Bjelaković M, Pavlović M (2017) Unilateral aplasia versus bilateral aplasia of the vertebral artery: a review of associated abnormalities. BioMed Res Int. https://doi.org/10.1155/2017/7238672

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zdun M, Frackowiak H (2019) Brain blood supply in ruminants. Med Weter 75(7):389–393

    Google Scholar 

Download references

Funding

The authors declare no funding and no personal conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

We, the undersigned, certify that each author has participated in and has contributed sufficiently to the work to take public responsibility for the appropriateness of the experimental design and methods, the collection, analysis, and interpretation of the data and that this final version has been reviewed and approved for submission and publication. We also certify that the sequence of authorship below is identical to that of the submitted manuscript. Conception and design: CS; Acquisition and data: CS, VM, CG, EB; Analysis and interpretation of data: CS, VM, CG, EB; Drafting of the manuscript: CS, VM; Critical revision of the manuscript: CS, CG, EB; Administrative, technical, or material support: CS, CD, SP, AH, CG, EB; Supervision: CS, CD, SP, AH, CG, EB.

Corresponding author

Correspondence to Céline Salaud.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The authors declare no financial disclosure. The authors have no personal, financial, or institutional interest in any of the devices described in this article.

Ethical approval

Local Institutional Review Board and Ethics Committee approval was obtained for use of animal anatomical specimens. The animals were euthanized by veterinarians in a comparative anatomy unit, and the approval of the Ethics Committee for Animal Experimentation (CEEA, C44274) was obtained beforehand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salaud, C., Moreau, V., Decante, C. et al. Composition of encephalic arteries and origin of the basilar artery are different between vertebrates. Surg Radiol Anat 46, 285–297 (2024). https://doi.org/10.1007/s00276-023-03286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-023-03286-6

Keywords

Navigation