Skip to main content

Advertisement

Log in

Quantifying yield and water productivity gaps in an irrigation district under rotational delivery schedule

  • Review
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

Removal of irrigation network limitations under a rotational delivery schedule has been focused on improving infrastructures without paying sufficient attention to improving management. We developed a methodology to assess the yield and water productivity gaps in the Río Dulce irrigation system, Santiago del Estero, Argentina. The AquaCrop model was used to determine the potential and attainable yields of maize and cotton under different water management scenarios. Actual yields and irrigation practices were determined by field surveys and farmers interviews. The AquaGIS tool facilitated the assessment of the spatial and temporal variations in yield using a daily climatic database of 26 years. The average yield gap (potential minus actual) amounted to 6 t ha−1 in maize and 2 t ha−1 in cotton. The average water productivity gap was 7 kg ha−1 mm−1 in maize and 2 kg ha−1 mm−1 in cotton. By a more effective use of the rotational delivery schedule, the yield gap could be partially closed, in particular if associated with other agronomic practices, namely nitrogen fertilization. The approach demonstrated the potential of combining field data collection with the use of AquaCrop to quantify the yield and WP gaps, and to propose management recommendations for closing the gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angueira C, Zamora E (2007) Carta de suelos. Oeste del Área de Riego del Río Dulce, Santiago del Estero, Argentina. Serie informes técnicos EEASE Nº40. INTA, Argentina

  • Ayers R, Westcot D (1985) Water quality for agriculture. FAO irrigation and drainage paper 29 Rev. 1. ISBN: 92-5-102263-1. Food and Agriculture Organization of the United Nations, Rome

  • Bos M, Murray-Rust D, Merrey D, Johnson H, Snellen W (1994) Methodologies for assessing performance of irrigation and drainage management. Irrig Drain Syst 7:231–261

    Article  Google Scholar 

  • Clemmens AJ, Molden DJ (2007) Water uses and productivity of irrigation systems. Irrig Sci 25(3):247–261

    Article  Google Scholar 

  • De Wit C (1992) Resource use efficiency in agriculture. Agric Syst 40:125–151

    Article  Google Scholar 

  • Farahani HJ, Izzi G, Oweis T (2009) Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agron J 101:469–476

    Article  Google Scholar 

  • Fresco LO, Huizing H, Van Keulen H, Luning H, Schipper R (1994) Land evaluation and farming systems analysis for land use planning. FAO, Rome, p 201

    Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF et al (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Dugo MP, Mateos L (2008) Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops. Agric Water Manag 95:48–58

    Article  Google Scholar 

  • Grassini P, Thorburn J, Burr C, Cassman KG (2011) High-yield irrigated maize systems in Western U.S. Corn-Belt. II. Irrigation management and crop water productivity. Field Crop Res 120:133–141

    Article  Google Scholar 

  • Grassini P, Torrion JA, Yang HS, Rees J, Andersen D, Cassman KG, Specht JE (2015) Soybean yield gaps and water productivity in the western U.S. Corn Belt. Field Crop Res 179(1):150–163

    Article  Google Scholar 

  • Hsiao TC, Steduto P, Fereres E (2007) A systematic and quantitative approach to improve water use efficiency in agriculture. Irrig Sci 25:209–231

    Article  Google Scholar 

  • Hsiao TC, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E (2009) AquaCrop-the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron J 101:448–459

    Article  Google Scholar 

  • Hussain I, Turral H, Molden D, Ahmad MUD (2007) Measuring and enhancing the value of agricultural water in irrigated river basins. Irrig Sci 25(3):263–282

    Article  Google Scholar 

  • Jensen M (2007) Beyond irrigation efficiency. Irrig Sci 25:233–245

    Article  Google Scholar 

  • Jury WA, Vaux HJ (2006) The role of science in solving the word’s emerging water problens. Proc Natl Acad Scic USA 102:15715–15720

    Article  Google Scholar 

  • Lobell DB, Cassman KG, Field CB (2009) Crop yield gaps: their importance, magnitudes, and causes. Ann Rev Environ Resour 34:179–204

    Article  Google Scholar 

  • Loomis RS, Connor DJ (1996) Crop ecology: productivity and management in agricultural systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Lorite I, García-Vila M, Ruiz-Ramos M, Fereres E (2013) AquaData and AquaGIS: two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop. Comp Elect Agric 96:227–237

    Article  Google Scholar 

  • Malano HM, Burton M (2001) Guidelines for benchmarking performance in the irrigation and drainage sector (no. 5). Food and Agriculture Org

  • Molden D, Oweis T, Steduto P, Bindraban P, Hanjra M, Kijne J (2010) Improving agricultural water productivity: between optimism and caution. Agric Water Manag 97:528–535

    Article  Google Scholar 

  • Mondino M, Peterlin O (2003) Respuesta del cultivo de algodón (Gossypium hirsutum) sembrado en surcos ultraestrechos a la aplicación de fertilizantes nitrogenados. 1. Rendimiento y sus componentes. IV Congresso Brasileiro de Algodão “Algodão: um Mercado em Evolução” Goiania GO—15 a 18 de setembro de 2003

  • Montoro A, López-Fuster P, Fereres E (2011) Improving on-farm water management through an irrigation scheduling service. Irrig Sci 29:311–319

    Article  Google Scholar 

  • Monzon JP, Mercau L, Andrade JF, Caviglia OP, Cerrudo AG, Cirilo AG et al (2014) Maize–soybean intensification alternatives for the Pampas. Field Crops Res. 162:48–59

    Article  Google Scholar 

  • Prieto D (2006) Modernization and the evolution of irrigation practices in the Río Dulce Irrigation Project. Una Tarea de Todos. Ph.D. thesis, Wageningen Agricultural University

  • Rao P (1993) Review of selected literature on indicators of irrigation performance. IIMI Research Paper, Colombo, Sri Lanka

    Google Scholar 

  • Romani M, Uhart S, Mondino M (2010) Efectos de la fecha de siembra y densidad poblacional sobre el rendimiento de maíz tropical, tropical x templado y templado en el Área de Riego del Río Dulce, Santiago del Estero. IX Congreso Nacional de Maíz y Simposio Nacional de Sorgo. Rosario. Argentina

  • Sadras VO (2004) Yield and water-use efficiency of water- and nitrogen-stressed wheat crops increase with degree of co-limitation. Eur J Agron 21:455–464

    Article  Google Scholar 

  • Sadras VO, Cassman KG, Grassini P, Hall AJ, Bastiaanssen W, Laborte AG, Milne AE, Sileshi G, Steduto P (2015) Yield gap analysis of field crops. FAO water reports 41, FAO, Rome

  • Steduto P, Hsiao TC, Raes D, Fereres E (2009) AquaCrop—the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron J 101:426–437

    Article  Google Scholar 

  • Steduto P, Hsiao TC, Fereres E, Raes D (2012) Crop yield response to water. Irrigation and drainage paper 66, FAO, Rome

  • Storie RE (1978) Storie index soil rating. University of California Special Publication 3203

  • Sumberg J (2012) Mind the (yield) gap (s). Food Secur 4(4):509–518

    Article  Google Scholar 

  • Till M, Bos M (1985) The influence of uniformity and leaching on the field application efficiency. ICID Bull 34(1):32–36

    Google Scholar 

  • Ünlü M, Kanber R, Onder S, Sezen M, Diker K, Ozekici B, Oylu M (2007) Cotton yields under different furrow irrigation management techniques in the Southeastern Anatolia Project (GAP) area, Turkey. Irrig Sci 26:35–48

    Article  Google Scholar 

  • Walker W (1989) Guidelines for designing and evaluating surface irrigation systems. FAO irrigation and drainage paper 45. FAO, Rome

Download references

Acknowledgments

This work has been funded by: Instituto Nacional de Tecnología Agropecuaria (INTA, Argentina); Programa Cooperativo para el Desarrollo Tecnológico Agroalimentario y Agroindustrial del Cono sur (PROCISUR); and Fondo Regional de Tecnología Agropecuaria (FONTAGRO). Special thanks to Carmen Ruz, (IAS-CSIC) for her skilled support. E. Fereres acknowledges his long-term friendship with his colleague Prof. L. Nijensohn, who carried out the original soil feasibility studies of the Río Dulce area in the late 1960s.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Angella.

Additional information

Communicated by V. Sadras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angella, G., García Vila, M., López, J.M. et al. Quantifying yield and water productivity gaps in an irrigation district under rotational delivery schedule. Irrig Sci 34, 71–83 (2016). https://doi.org/10.1007/s00271-015-0486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-015-0486-0

Keywords

Navigation