Skip to main content

Advertisement

Log in

CIRSE Standards of Practice on Thermal Ablation of Primary and Secondary Lung Tumours

  • CIRSE Standards of Practice
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Postmus PE, Kerr KM, Oudkerk M, Senan S, Waller DA, Vansteenkiste J, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28:iv1–21.

    Article  CAS  PubMed  Google Scholar 

  2. Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27:1386–422.

    Article  PubMed  Google Scholar 

  3. Crocetti L, Iezzi R, Goldberg SN, Bilbao JI, Sami A, Akhan O, et al. The ten commandments of liver ablation: expert discussion and report from Mediterranean Interventional Oncology (MIOLive) congress 2017. Eur Rev Med Pharmacol Sci. 2018;22:3896–904.

    CAS  PubMed  Google Scholar 

  4. Vo Chieu VD, Werncke T, Hensen B, Wacker F, Ringe KI. CT-guided microwave ablation of liver tumors in anatomically challenging locations. Cardiovasc Interv Radiol. 2018;41:1520–9.

    Article  Google Scholar 

  5. Krokidis ME, Orsi F, Katsanos K, Helmberger T, Adam A. CIRSE guidelines on percutaneous ablation of small renal cell carcinoma. Cardiovasc Interv Radiol. 2017;40:177–91.

    Article  Google Scholar 

  6. Ierardi AM, Puliti A, Angileri SA, Petrillo M, Duka E, Floridi C, et al. Microwave ablation of malignant renal tumours: intermediate-term results and usefulness of RENAL and mRENAL scores for predicting outcomes and complications. Med Oncol. 2017;34:97.

    Article  PubMed  Google Scholar 

  7. Saccomandi P, Lapergola A, Longo F, Schena E, Quero G. Thermal ablation of pancreatic cancer: a systematic literature review of clinical practice and pre-clinical studies. Int J Hyperth. 2018;35:398–418.

    Article  Google Scholar 

  8. Luigi Cazzato R, Auloge P, De Marini P, Rousseau C, Chiang JB, Koch G, et al. Percutaneous image-guided ablation of bone metastases: local tumor control in oligometastatic patients. Int J Hyperth. 2018;35:493–9.

    Article  Google Scholar 

  9. Zheng B, Wang J, Ju J, Wu T, Tong G, Ren J. Efficacy and safety of cooled and uncooled microwave ablation for the treatment of benign thyroid nodules: a systematic review and meta-analysis. Endocrine. 2018;62:307–17.

    Article  CAS  PubMed  Google Scholar 

  10. Ierardi AM, Savasi V, Angileri SA, Petrillo M, Sbaraini S, Pinto A, et al. Percutaneous high frequency microwave ablation of uterine fibroids: systematic review. BioMed Res Int. 2018;2018:1–9.

    Article  Google Scholar 

  11. Li G, Xue M, Chen W, Yi S. Efficacy and safety of radiofrequency ablation for lung cancers: a systematic review and meta-analysis. Eur J Radiol Irel. 2018;100:92–8.

    Article  Google Scholar 

  12. Streitparth T, Schumacher D, Damm R, Friebe B, Mohnike K, Kosiek O, et al. Percutaneous radiofrequency ablation in the treatment of pulmonary malignancies: efficacy, safety and predictive factors. Oncotarget. 2018;9:11722–33.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Healey TT, March BT, Baird G, Dupuy DE. Microwave ablation for lung neoplasms: a retrospective analysis of long-term results. J Vasc Interv Radiol. 2017;28:206–11.

    Article  PubMed  Google Scholar 

  14. Kurilova I, Gonzalez-Aguirre A, Beets-Tan RG, Erinjeri J, Petre EN, Gonen M, et al. Microwave ablation in the management of colorectal cancer pulmonary metastases. Cardiovasc Interv Radiol. 2018;41:1530–44.

    Article  CAS  Google Scholar 

  15. Ierardi AM, Coppola A, Lucchina N, Carrafiello G. Treatment of lung tumours with high-energy microwave ablation: a single-centre experience. Med Oncol. 2017;34:5.

    Article  PubMed  Google Scholar 

  16. Lyons GR, Askin G, Pua BB. Clinical outcomes after pulmonary cryoablation with the use of a triple freeze protocol. J Vasc Interv Radiol. 2018;29:714–21.

    Article  PubMed  Google Scholar 

  17. Inoue M, Nakatsuka S, Jinzaki M. Cryoablation of early-stage primary lung cancer. BioMed Res Int. 2014;2014:1–8.

    Article  Google Scholar 

  18. Vogl TJ, Eckert R, Naguib NNN, Beeres M, Gruber-Rouh T, Nour-Eldin NEA. Thermal ablation of colorectal lung metastases: retrospective comparison among laser-induced thermotherapy, radiofrequency ablation, and microwave ablation. Am J Roentgenol. 2016;207:1340–9.

    Article  Google Scholar 

  19. Nour-Eldin N-EA, Exner S, Al-Subhi M, Naguib NNN, Kaltenbach B, Roman A, et al. Ablation therapy of non-colorectal cancer lung metastases: retrospective analysis of tumour response post-laser-induced interstitial thermotherapy (LITT), radiofrequency ablation (RFA) and microwave ablation (MWA). Int J Hyperth. 2017;33:1–10.

    Article  Google Scholar 

  20. Ahmed M, Solbiati L, Brace CL, Breen DJ, Callstrom MR, Charboneau JW, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria—a 10-year update. Radiology. 2014;273:241–60.

    Article  PubMed  Google Scholar 

  21. Amouyal G, Pernot S, Dean C, Cholley B, Scotte F, Sapoval M, et al. Percutaneous radiofrequency ablation of lung metastases from colorectal carcinoma under C-arm cone beam CT guidance. Diagn Interv Imaging. 2017;98:793–9.

    Article  CAS  PubMed  Google Scholar 

  22. Cazzato RL, Battistuzzi J-B, Catena V, Grasso RF, Zobel BB, Schena E, et al. Cone-beam computed tomography (CBCT) versus CT in lung ablation procedure: which is faster? Cardiovasc Interv Radiol. 2015;38:1231–6.

    Article  Google Scholar 

  23. Rosen JE, Keshava HB, Yao X, Kim AW, Detterbeck FC, Boffa DJ. The natural history of operable non-small cell lung cancer in the national cancer database. Ann Thorac Surg. 2016;101:1850–5.

    Article  PubMed  Google Scholar 

  24. Louie AV, Palma DA, Dahele M, Rodrigues GB, Senan S. Management of early-stage non-small cell lung cancer using stereotactic ablative radiotherapy: controversies, insights, and changing horizons. Radiother Oncol. 2015;114:138–47.

    Article  PubMed  Google Scholar 

  25. Engelhardt KE, Feinglass JM, DeCamp MM, Bilimoria KY, Odell DD. Treatment trends in early-stage lung cancer in the United States, 2004 to 2013: a time-trend analysis of the National Cancer Data Base. J Thorac Cardiovasc Surg. 2018;156:1233–46.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Haasbeek CJA, Palma D, Visser O, Lagerwaard FJ, Slotman B, Senan S. Early-stage lung cancer in elderly patients: a population-based study of changes in treatment patterns and survival in the Netherlands. Ann Oncol. 2012;23:2743–7.

    Article  CAS  PubMed  Google Scholar 

  27. Palussière J, Chomy F, Savina M, Deschamps F, Gaubert JY, Renault A, et al. Radiofrequency ablation of stage IA non–small cell lung cancer in patients ineligible for surgery: results of a prospective multicenter phase II trial. J Cardiothorac Surg. 2018;13:91.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dupuy DE, Fernando HC, Hillman S, Ng T, Tan AD, Sharma A, et al. Radiofrequency ablation of stage IA non-small cell lung cancer in medically inoperable patients: results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer. 2015;121:3491–8.

    Article  CAS  PubMed  Google Scholar 

  29. Uhlig J, Ludwig JM, Goldberg SB, Chiang A, Blasberg JD, Kim HS. Survival rates after thermal ablation versus stereotactic radiation therapy for stage 1 non–small cell lung cancer: a National Cancer Database Study. Radiology. 2018;289:862–70.

    Article  PubMed  Google Scholar 

  30. Vansteenkiste J, Wauters E, Reymen B, Ackermann CJ, Peters S, De Ruysscher D. Current status of immune checkpoint inhibition in early-stage NSCLC. Ann Oncol. 2019;30:1244–53.

    Article  CAS  PubMed  Google Scholar 

  31. de Baère T, Aupérin A, Deschamps F, Chevallier P, Gaubert Y, Boige V, et al. Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases. Ann Oncol. 2015;26:987–91.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Petre EN, Jia X, Thornton RH, Sofocleous CT, Alago W, Kemeny NE, et al. Treatment of pulmonary colorectal metastases by radiofrequency ablation. Clin Colorectal Cancer. 2013;12:37–44.

    Article  PubMed  Google Scholar 

  33. Hiyoshi Y, Miyamoto Y, Kiyozumi Y, Sawayama H, Eto K, Nagai Y, et al. CT-guided percutaneous radiofrequency ablation for lung metastases from colorectal cancer. Int J Clin Oncol. 2019;24:288–95.

    Article  PubMed  Google Scholar 

  34. Gao SJ, Kim AW, Puchalski JT, Bramley K, Detterbeck FC, Boffa DJ, et al. Indications for invasive mediastinal staging in patients with early non-small cell lung cancer staged with PET-CT. Lung Cancer. 2017;109:36–41.

    Article  PubMed  Google Scholar 

  35. Liu J, Dong M, Sun X, Li W, Xing L, Yu J. Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: a meta-analysis. PLoS One. 2016;11:e0146195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Na F, Wang J, Li C, Deng L, Xue J, Lu Y. Primary tumor standardized uptake value measured on F18-fluorodeoxyglucose positron emission tomography is of prediction value for survival and local control in non–small-cell lung cancer receiving radiotherapy: meta-analysis. J Thorac Oncol. 2014;9:834–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Satoh Y, Onishi H, Nambu A, Araki T. Volume-based parameters measured by using FDG PET/CT in patients with stage I NSCLC treated with stereotactic body radiation therapy: prognostic value. Radiology. 2014;270:275–81.

    Article  PubMed  Google Scholar 

  38. Donington J, Ferguson M, Mazzone P, Handy JJ, Schuchert M, Fernando H, et al. American College of Chest Physicians and Society of Thoracic Surgeons consensus statement for evaluation and management for high-risk patients with stage I non-small cell lung cancer. Chest. 2012;142:1620–35.

    Article  PubMed  Google Scholar 

  39. Sandler KA, Abtin F, Suh R, Cook RR, Felix C, Lee JM, et al. A prospective phase 2 study evaluating safety and efficacy of combining stereotactic body radiation therapy with heat-based ablation for centrally located lung tumors. Int J Radiat Oncol. 2018;101:564–73.

    Article  Google Scholar 

  40. Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer. Chest. 2013;143:e278S–313S.

    Article  CAS  PubMed  Google Scholar 

  41. Vogl TJ, Naguib NNN, Gruber-Rouh T, Koitka K, Lehnert T, Nour-Eldin N-EA. Microwave ablation therapy: clinical utility in treatment of pulmonary metastases. Radiology. 2011;261:643–51.

    Article  PubMed  Google Scholar 

  42. Omae K, Hiraki T, Gobara H, Iguchi T, Fujiwara H, Matsui Y, et al. Long-term survival after radiofrequency ablation of lung oligometastases from five types of primary lesions: a retrospective evaluation. J Vasc Interv Radiol. 2016;27:1362–70.

    Article  PubMed  Google Scholar 

  43. Koelblinger C, Strauss S, Gillams A. Outcome after radiofrequency ablation of sarcoma lung metastases. Cardiovasc Interv Radiol. 2014;37:147–53.

    Article  Google Scholar 

  44. Dupuy DE. Image-guided thermal ablation of lung malignancies. Radiology. 2011;260:633–55.

    Article  PubMed  Google Scholar 

  45. Crocetti L, Lencioni R. Radiofrequency ablation of pulmonary tumors. Eur J Radiol. 2010;75:23–7.

    Article  PubMed  Google Scholar 

  46. de Baère T. Lung tumor radiofrequency ablation: where do we stand? Cardiovasc Interv Radiol. 2011;34:241–51.

    Article  Google Scholar 

  47. Palussière J, Gómez F, Cannella M, Ferron S, Descat E, Fonck M, et al. Single-session radiofrequency ablation of bilateral lung metastases. Cardiovasc Interv Radiol. 2012;35:852–9.

    Article  Google Scholar 

  48. Pereira PL, Salvatore M. Standards of practice: guidelines for thermal ablation of primary and secondary lung tumors. Cardiovasc Interv Radiol. 2012;35:247–54.

    Article  Google Scholar 

  49. Gillams AR, Lees WR. Radiofrequency ablation of lung metastases: factors influencing success. Eur Radiol. 2008;18:672–7.

    Article  PubMed  Google Scholar 

  50. Iguchi T, Hiraki T, Gobara H, Mimura H, Fujiwara H, Tajiri N, et al. Percutaneous radiofrequency ablation of lung tumors close to the heart or aorta: evaluation of safety and effectiveness. J Vasc Interv Radiol. 2007;18:733–40.

    Article  PubMed  Google Scholar 

  51. Lababede O, Meziane MA. The eighth edition TNM staging of lung cancer: reference chart and diagrams. Oncologist. 2018;23:844–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Spyropoulos AC, Al-Badri A, Sherwood MW, Douketis JD. Periprocedural management of patients receiving a vitamin K antagonist or a direct oral anticoagulant requiring an elective procedure or surgery. J Thromb Haemost. 2016;14:875–85.

    Article  CAS  PubMed  Google Scholar 

  53. Malloy PC, Grassi CJ, Kundu S, Gervais DA, Miller DL, Osnis RB, et al. Consensus guidelines for periprocedural management of coagulation status and hemostasis risk in percutaneous image-guided interventions. J Vasc Interv Radiol. 2009;20:S240–9.

    Article  PubMed  Google Scholar 

  54. Hou X, Zhuang X, Zhang H, Wang K, Zhang Y. Artificial pneumothorax: a safe and simple method to relieve pain during microwave ablation of subpleural lung malignancy. Minim Invasive Ther Allied Technol. 2017;26:220–6.

    Article  PubMed  Google Scholar 

  55. Yang X, Zhang K, Ye X, Zheng A, Huang G, Li W, et al. Artificial pneumothorax for pain relief during microwave ablation of subpleural lung tumors. Indian J Cancer. 2015;52(Suppl 2):e80–3.

    PubMed  Google Scholar 

  56. Hoffmann RT, Jakobs TF, Lubienski A, Schrader A, Trumm C, Reiser MF, et al. Percutaneous radiofrequency ablation of pulmonary tumors—is there a difference between treatment under general anaesthesia and under conscious sedation? Eur J Radiol. 2006;59:168–74.

    Article  CAS  PubMed  Google Scholar 

  57. Elliott BA, Curry TB, Atwell TD, Brown MJ, Rose SH. Lung isolation, one-lung ventilation, and continuous positive airway pressure with air for radiofrequency ablation of neoplastic pulmonary lesions. Anesth Analg. 2006;103:463–4.

    Article  PubMed  Google Scholar 

  58. Fernández AB, Rodríguez O, Sangüesa JR. One-lung ventilation for radiofrequency ablation of pulmonary lesions out of the surgical area: a secure option. J Cardiothorac Vasc Anesth. 2011;25:577–8.

    Article  PubMed  Google Scholar 

  59. Chung DYF, Tse DML, Boardman P, Gleeson FV, Little MW, Scott SH, et al. High-frequency jet ventilation under general anesthesia facilitates CT-guided lung tumor thermal ablation compared with normal respiration under conscious analgesic sedation. J Vasc Interv Radiol. 2014;25:1463–9.

    Article  PubMed  Google Scholar 

  60. Hiraki T, Gobara H, Fujiwara H, Ishii H, Tomita K, Uka M, et al. Lung cancer ablation: complications. Semin Interv Radiol. 2013;30:169–75.

    Article  Google Scholar 

  61. Hinshaw JL, Lubner MG, Ziemlewicz TJ, Lee FTJ, Brace CL. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation–what should you use and why? Radiographics. 2014;34:1344–62.

    Article  PubMed  Google Scholar 

  62. Ryan ER, Sofocleous CT, Schöder H, Carrasquillo JA, Nehmeh S, Larson SM, et al. Split-dose technique for FDG PET/CT—guided percutaneous ablation: a method to facilitate lesion targeting and to provide immediate assessment of treatment effectiveness. Radiology. 2013;268:288–95.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Garnon J, Cazzato RL, Caudrelier J, Nouri-Neuville M, Rao P, Boatta E, et al. Adjunctive thermoprotection during percutaneous thermal ablation procedures: review of current techniques. Cardiovasc Interv Radiol. 2019;42:344–57.

    Article  Google Scholar 

  64. Abtin FG, Eradat J, Gutierrez AJ, Lee C, Fishbein MC, Suh RD. Radiofrequency ablation of lung tumors: imaging features of the postablation zone. RadioGraphics. 2012;32:947–69.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Clasen S, Krober S-M, Kosan B, Aebert H, Fend F, Bomches A, et al. Pathomorphologic evaluation of pulmonary radiofrequency ablation. Cancer. 2008;113:3121–9.

    Article  PubMed  Google Scholar 

  66. Lencioni R, Crocetti L, Cioni R, Suh R, Glenn D, Regge D, et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol. 2008;9:621–8.

    Article  PubMed  Google Scholar 

  67. Steinke K, King J, Glenn D, Morris DL. Radiologic appearance and complications of percutaneous computed tomography—guided radiofrequency-ablated pulmonary metastases from colorectal carcinoma. J Comput Assist Tomogr. 2003;27:750–7.

    Article  PubMed  Google Scholar 

  68. Anderson EM, Lees WR, Gillams AR. Early indicators of treatment success after percutaneous radiofrequency of pulmonary tumors. Cardiovasc Interv Radiol. 2009;32:478–83.

    Article  Google Scholar 

  69. Yang Q, Qi H, Zhang R, Wan C, Song Z, Zhang L, et al. Risk factors for local progression after percutaneous radiofrequency ablation of lung tumors: evaluation based on a review of 147 tumors. J Vasc Interv Radiol. 2017;28:481–9.

    Article  PubMed  Google Scholar 

  70. de Baère T, Palussière J, Aupérin A, Hakime A, Abdel-Rehim M, Kind M, et al. Midterm local efficacy and survival after radiofrequency ablation of lung tumors with minimum follow-up of 1 year: prospective evaluation. Radiology. 2006;240:587–96.

    Article  PubMed  Google Scholar 

  71. Palussière J, Catena V, Buy X. Percutaneous thermal ablation of lung tumors—radiofrequency, microwave and cryotherapy: where are we going? Diagn Interv Imaging. 2017;98:619–25.

    Article  PubMed  Google Scholar 

  72. Macchi M, Belfiore MP, Floridi C, Serra N, Belfiore G, Carmignani L, et al. Radiofrequency versus microwave ablation for treatment of the lung tumours: LUMIRA (lung microwave radiofrequency) randomized trial. Med Oncol. 2017;34:96.

    Article  CAS  PubMed  Google Scholar 

  73. Zheng A, Wang X, Yang X, Wang W, Huang G, Gai Y, et al. Major complications after lung microwave ablation: a single-center experience on 204 sessions. Ann Thorac Surg. 2014;98:243–8.

    Article  PubMed  Google Scholar 

  74. Vogl TJ, Roman A, Nour-Eldin N-EA, Hohenforst-Schmidt W, Bednarova I, Kaltenbach B. A comparison between 915 MHz and 2450 MHz microwave ablation systems for the treatment of small diameter lung metastases. Diagn Interv Radiol. 2018;24:31–7.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Brace CL, Hinshaw JL, Laeseke PF, Sampson LA, Lee FT. Pulmonary thermal ablation: comparison of radiofrequency and microwave devices by using gross pathologic and ct findings in a swine model. Radiology. 2009;251:705–11.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hinshaw JL, Littrup PJ, Durick N, Leung W, Lee FT, Sampson L, et al. Optimizing the protocol for pulmonary cryoablation: a comparison of a dual- and triple-freeze protocol. Cardiovasc Interv Radiol. 2010;33:1180–5.

    Article  Google Scholar 

  77. Clasen S, Kettenbach J, Kosan B, Aebert H, Schernthaner M, Kröber S-M, et al. Delayed development of pneumothorax after pulmonary radiofrequency ablation. Cardiovasc Interv Radiol. 2009;32:484–90.

    Article  Google Scholar 

  78. Palussière J, Marcet B, Descat E, Deschamps F, Rao P, Ravaud A, et al. Lung tumors treated with percutaneous radiofrequency ablation: computed tomography imaging follow-up. Cardiovasc Interv Radiol. 2011;34:989–97.

    Article  Google Scholar 

  79. Okuma T, Matsuoka T, Yamamoto A, Oyama Y, Inoue K, Nakamura K, et al. Factors contributing to cavitation after CT-guided percutaneous radiofrequency ablation for lung tumors. J Vasc Interv Radiol. 2007;18:399–404.

    Article  PubMed  Google Scholar 

  80. Peulen H, Mantel F, Guckenberger M, Belderbos J, Werner-Wasik M, Hope A, et al. Validation of high-risk computed tomography features for detection of local recurrence after stereotactic body radiation therapy for early-stage non-small cell lung cancer. Int J Radiat Oncol. 2016;96:134–41.

    Article  Google Scholar 

  81. Bonichon F, Palussière J, Godbert Y, Pulido M, Descat E, Devillers A, et al. Diagnostic accuracy of 18F-FDG PET/CT for assessing response to radiofrequency ablation treatment in lung metastases: a multicentre prospective study. Eur J Nucl Med Mol Imaging. 2013;40:1817–27.

    Article  CAS  PubMed  Google Scholar 

  82. Deandreis D, Leboulleux S, Dromain C, Auperin A, Coulot J, Lumbroso J, et al. Role of FDG PET/CT and chest CT in the follow-up of lung lesions treated with radiofrequency ablation. Radiology. 2011;258:270–6.

    Article  PubMed  Google Scholar 

  83. Yoo DC, Dupuy DE, Hillman SL, Fernando HC, Rilling WS, Shepard J-AO, et al. Radiofrequency ablation of medically inoperable stage IA non-small cell lung cancer: are early posttreatment PET findings predictive of treatment outcome? AJR Am J Roentgenol. 2011;197:334–40.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lee H, Jin GY, Han YM, Chung GH, Lee YC, Kwon KS, et al. Comparison of survival rate in primary non-small-cell lung cancer among elderly patients treated with radiofrequency ablation, surgery, or chemotherapy. Cardiovasc Interv Radiol. 2012;35:343–50.

    Article  Google Scholar 

  85. Lam A, Yoshida EJ, Bui K, Fernando D, Nelson K, Abi-Jaoudeh N. A National Cancer Database Analysis of radiofrequency ablation versus stereotactic body radiotherapy in early-stage non-small cell lung cancer. J Vasc Interv Radiol. 2018;29:1211–7.

    Article  PubMed  Google Scholar 

  86. Baine MJ, Sleightholm R, Neilsen BK, Oupický D, Smith LM, Verma V, et al. Stereotactic body radiation therapy versus nonradiotherapeutic ablative procedures (laser/cryoablation and electrocautery) for early-stage non-small cell lung cancer. J Natl Compr Cancer Netw. 2019;17:450–8.

    Article  Google Scholar 

  87. Schoellnast H, Deodhar A, Hsu M, Moskowitz C, Nehmeh SA, Thornton RH, et al. Recurrent non-small cell lung cancer: evaluation of CT-guided radiofrequency ablation as salvage therapy. Acta Radiol. 2012;53:893–9.

    Article  PubMed  Google Scholar 

  88. Cheng M, Fay M, Steinke K. Percutaneous CT-guided thermal ablation as salvage therapy for recurrent non-small cell lung cancer after external beam radiotherapy: a retrospective study. Int J Hyperth Off J Eur Soc Hyperthermic Oncol N Am Hyperth Gr. 2016;32:316–23.

    Article  CAS  Google Scholar 

  89. Grieco CA, Simon CJ, Mayo-Smith WW, DiPetrillo TA, Ready NE, Dupuy DE. Percutaneous image-guided thermal ablation and radiation therapy: outcomes of combined treatment for 41 patients with inoperable stage I/II non–small-cell lung cancer. J Vasc Interv Radiol. 2006;17:1117–24.

    Article  PubMed  Google Scholar 

  90. Lyons NJR, Pathak S, Daniels IR, Spiers A, Smart NJ. Percutaneous management of pulmonary metastases arising from colorectal cancer; a systematic review. Eur J Surg Oncol. 2015;41:1447–55.

    Article  CAS  PubMed  Google Scholar 

  91. Wolf FJ, Grand DJ, Machan JT, DiPetrillo TA, Mayo-Smith WW, Dupuy DE. Microwave ablation of lung malignancies: effectiveness, ct findings, and safety in 50 patients. Radiology. 2008;247:871–9.

    Article  PubMed  Google Scholar 

  92. Wang H, Littrup PJ, Duan Y, Zhang Y, Feng H, Nie Z. Thoracic masses treated with percutaneous cryotherapy: initial experience with more than 200 procedures. Radiology. 2005;235:289–98.

    Article  PubMed  Google Scholar 

  93. De Baere T, Tselikas L, Woodrum D, Abtin F, Littrup P, Deschamps F, et al. Evaluating cryoablation of metastatic lung tumors in patients-safety and efficacy the ECLIPSE trial-interim analysis at 1 year. J Thorac Oncol. 2015;10:1468–74.

    Article  PubMed  Google Scholar 

  94. Hiraki T, Tajiri N, Mimura H, Yasui K, Gobara H, Mukai T, et al. Pneumothorax, pleural effusion, and chest tube placement after radiofrequency ablation of lung tumors: incidence and risk factors. Radiology. 2006;241:275–83.

    Article  PubMed  Google Scholar 

  95. Zhu JC, Yan TD, Morris DL. A systematic review of radiofrequency ablation for lung tumors. Ann Surg Oncol. 2008;15:1765–74.

    Article  PubMed  Google Scholar 

  96. Kennedy SA, Milovanovic L, Dao D, Farrokhyar F, Midia M. Risk factors for pneumothorax complicating radiofrequency ablation for lung malignancy: a systematic review and meta-analysis. J Vasc Interv Radiol. 2014;25:1671–81.

    Article  PubMed  Google Scholar 

  97. Filippiadis DK, Binkert C, Pellerin O, Hoffmann RT, Krajina A, Pereira PL. Cirse quality assurance document and standards for classification of complications: the cirse classification system. Cardiovasc Interv Radiol. 2017;40:1141–6.

    Article  CAS  Google Scholar 

  98. Kashima M, Yamakado K, Takaki H, Kodama H, Yamada T, Uraki J, et al. Complications after 1000 lung radiofrequency ablation sessions in 420 patients: a single center’s experiences. Am J Roentgenol. 2011;197:W576–80.

    Article  Google Scholar 

  99. Bi N, Shedden K, Zheng X, Kong F-M. Comparison of the effectiveness of radiofrequency ablation with stereotactic body radiation therapy in inoperable stage I non-small cell lung cancer: a systemic review and pooled analysis. Int J Radiat Oncol. 2016;95:1378–90.

    Article  Google Scholar 

  100. Bhalla N, Brooker R, Brada M. Combining immunotherapy and radiotherapy in lung cancer. J Thorac Dis. 2018;10:S1447–60.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Britschgi C, Riesterer O, Burger IA, Guckenberger M, Curioni-Fontecedro A. Report of an abscopal effect induced by stereotactic body radiotherapy and nivolumab in a patient with metastatic non-small cell lung cancer. Radiat Oncol. 2018;13:102.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Abdo J, Cornell DL, Mittal SK, Agrawal DK. Immunotherapy plus cryotherapy: potential augmented abscopal effect for advanced cancers. Front Oncol. 2018;8:85.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Silvestrini MT, Ingham ES, Mahakian LM, Kheirolomoom A, Liu Y, Fite BZ, et al. Priming is key to effective incorporation of image-guided thermal ablation into immunotherapy protocols. JCI Insight. 2017;2:e90521.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Bäcklund M, Freedman J. Microwave ablation and immune activation in the treatment of recurrent colorectal lung metastases: a case report. Case Rep Oncol. 2017;10:383–7.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Fernando HC, De Hoyos A, Landreneau RJ, Gilbert S, Gooding WE, Buenaventura PO, et al. Radiofrequency ablation for the treatment of non-small cell lung cancer in marginal surgical candidates. J Thorac Cardiovasc Surg. 2005;129:639–44.

    Article  PubMed  Google Scholar 

  106. Yan TD, King J, Sjarif A, Glenn D, Steinke K, Morris DL. Percutaneous radiofrequency ablation of pulmonary metastases from colorectal carcinoma: prognostic determinants for survival. Ann Surg Oncol. 2006;13:1529–37.

    Article  PubMed  Google Scholar 

  107. Simon CJ, Dupuy DE, DiPetrillo TA, Safran HP, Grieco CA, Ng T, et al. Pulmonary radiofrequency ablation: long-term safety and efficacy in 153 patients. Radiology. 2007;243:268–75.

    Article  PubMed  Google Scholar 

  108. Yamakado K, Inoue Y, Takao M, Takaki H, Nakatsuka A, Uraki J, et al. Long-term results of radiofrequency ablation in colorectal lung metastases: single center experience. Oncol Rep. 2009;22:885–91.

    Article  PubMed  Google Scholar 

  109. Kodama H, Yamakado K, Takaki H, Kashima M, Uraki J, Nakatsuka A, et al. Lung radiofrequency ablation for the treatment of unresectable recurrent non-small-cell lung cancer after surgical intervention. Cardiovasc Interv Radiol. 2012;35:563–9.

    Article  Google Scholar 

  110. Ferguson J, Alzahrani N, Zhao J, Glenn D, Power M, Liauw W, et al. Long term results of RFA to lung metastases from colorectal cancer in 157 patients. Eur J Surg Oncol. 2015;41:690–5.

    Article  CAS  PubMed  Google Scholar 

  111. Shi F, Li G, Zhou Z, Xu R, Li W, Zhuang W, et al. Microwave ablation versus radiofrequency ablation for the treatment of pulmonary tumors. Oncotarget. 2017;8:109791–8.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Venturini.

Ethics declarations

Conflicts of interest

G Carrafiello is a consultant for Medtronic. P. Pereira is a consultant for Angiodynamics, Terumo and Medtronic Covidien. The other authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

CIRSE SOP Accompanying Tables (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venturini, M., Cariati, M., Marra, P. et al. CIRSE Standards of Practice on Thermal Ablation of Primary and Secondary Lung Tumours. Cardiovasc Intervent Radiol 43, 667–683 (2020). https://doi.org/10.1007/s00270-020-02432-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-020-02432-6

Keywords

Navigation