Skip to main content

Advertisement

Log in

Diagnostic accuracy of 18F-FDG PET/CT for assessing response to radiofrequency ablation treatment in lung metastases: a multicentre prospective study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To assess diagnostic accuracy of 18F-FDG PET/CT at 3 months for the detection of local recurrence after radiofrequency ablation (RFA) of lung metastases.

Methods

The PET/CT scan at 3 months was compared with a baseline PET/CT scan from a maximum of 2 months before RFA, with the reference standard as recurrence diagnosed by CT during a 12-month follow-up. Local recurrence was diagnosed on the PET/CT scan if lesional uptake was greater than the mediastinal background. Maximum standardized uptake values (SUVmax) were recorded. ROC curve analysis for SUVmax was performed. Overall survival (OS) and time to local relapse were computed from the date of RFA using the Kaplan-Meier method (www.clinicaltrials.gov: NCT 00382252).

Results

Between 2005 and 2009, 89 patients (mean age 65 years) underwent RFA for 115 lung metastases (mean size 16.2 ± 6.9 mm). The median SUVmax before RFA was 5.8 ± 4. PET/CT at 3 months and the reference standard were available in 77 patients and 100 lesions. Accuracy was 66.00 % (95 % CI 55.85–75.18 %), sensitivity 90.91 % (95 % CI 58.72–99.77 %), specificity 62.92 % (95 % CI 52.03–72.93 %), PPV 23.26 % (95 % CI 11.76–38.63 %), and NPV 98.25 % (95 % CI 90.61–99.96 %). One-year OS was 94.2 % (95 % CI 86.6–97.5 %) and the probability of being free of local recurrence 1 year after RFA was 84.6 % (95 % CI 75.0–90.8 %).

Conclusion

The specificity of PET/CT at 3 months is low because of persistent inflammation, especially when the lesion is close to the pleura. This technique is useful for its negative predictive value, but positive findings need to be confirmed by histology before new treatment is planned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ambrogi MC, Fanucchi O, Cioni R, Dini P, De LA, Cappelli C, et al. Long-term results of radiofrequency ablation treatment of stage I non-small cell lung cancer: a prospective intention-to-treat study. J Thorac Oncol. 2011;6(12):2044–51.

    Article  PubMed  Google Scholar 

  2. Facey K, Bradbury I, Laking G, Payne E. Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers. Health Technol Assess. 2007;11(44):iii–iv, xi–267.

    CAS  PubMed  Google Scholar 

  3. de Baère T, Palussière J, Aupérin A, Hakime A, Abdel-Rehim M, Kind M, et al. Midterm local efficacy and survival after radiofrequency ablation of lung tumors with minimum follow-up of 1 year: prospective evaluation. Radiology. 2006;240(2):587–96.

    Article  PubMed  Google Scholar 

  4. Simon CJ, Dupuy DE, DiPetrillo TA, Safran HP, Grieco CA, Ng T, et al. Pulmonary radiofrequency ablation: long-term safety and efficacy in 153 patients. Radiology. 2007;243(1):268–75.

    Article  PubMed  Google Scholar 

  5. Suh R, Reckamp K, Zeidler M, Cameron R. Radiofrequency ablation in lung cancer: promising results in safety and efficacy. Oncology (Williston Park). 2005;19(11 Suppl 4):12–21.

    Google Scholar 

  6. Yan TD, King J, Sjarif A, Glenn D, Steinke K, Morris DL. Percutaneous radiofrequency ablation of pulmonary metastases from colorectal carcinoma: prognostic determinants for survival. Ann Surg Oncol. 2006;13(11):1529–37.

    Article  PubMed  Google Scholar 

  7. Yan TD, King J, Sjarif A, Glenn D, Steinke K, Al-Kindy A, et al. Treatment failure after percutaneous radiofrequency ablation for nonsurgical candidates with pulmonary metastases from colorectal carcinoma. Ann Surg Oncol. 2007;14(5):1718–26.

    Article  PubMed  Google Scholar 

  8. Akeboshi M, Yamakado K, Nakatsuka A, Hataji O, Taguchi O, Takao M, et al. Percutaneous radiofrequency ablation of lung neoplasms: initial therapeutic response. J Vasc Interv Radiol. 2004;15(5):463–70.

    Article  PubMed  Google Scholar 

  9. Palussière J, Marcet B, Descat E, Deschamps F, Rao P, Ravaud A, et al. Lung tumors treated with percutaneous radiofrequency ablation: computed tomography imaging follow-up. Cardiovasc Intervent Radiol. 2011;34(5):989–97.

    Article  PubMed  Google Scholar 

  10. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–16.

    Article  CAS  PubMed  Google Scholar 

  11. Travaini LL, Trifiro G, Ravasi L, Monfardini L, Della VP, Bonomo G, et al. Role of [18F]FDG-PET/CT after radiofrequency ablation of liver metastases: preliminary results. Eur J Nucl Med Mol Imaging. 2008;35:1316–22.

    Article  PubMed  Google Scholar 

  12. Deandreis D, Leboulleux S, Dromain C, Auperin A, Coulot J, Lumbroso J, et al. Role of FDG PET/CT and chest CT in the follow-up of lung lesions treated with radiofrequency ablation. Radiology. 2011;258(1):270–6.

    Article  PubMed  Google Scholar 

  13. Singnurkar A, Solomon SB, Gonen M, Larson SM, Schoder H. 18F-FDG PET/CT for the prediction and detection of local recurrence after radiofrequency ablation of malignant lung lesions. J Nucl Med. 2010;51(12):1833–40.

    Article  PubMed  Google Scholar 

  14. Yoo DC, Dupuy DE, Hillman SL, Fernando HC, Rilling WS, Shepard JA, et al. Radiofrequency ablation of medically inoperable stage in non-small cell lung cancer: are early posttreatment PET findings predictive of treatment outcome? AJR Am J Roentgenol. 2011;197(2):334–40.

    Article  PubMed  Google Scholar 

  15. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, et al. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. AJR Am J Roentgenol. 2003;181(1):51–5.

    Article  PubMed  Google Scholar 

  16. Chua TC, Sarkar A, Saxena A, Glenn D, Zhao J, Morris DL. Long-term outcome of image-guided percutaneous radiofrequency ablation of lung metastases: an open-labeled prospective trial of 148 patients. Ann Oncol. 2010;21:2017–22.

    Article  CAS  PubMed  Google Scholar 

  17. Yamakado K, Hase S, Matsuoka T, Tanigawa N, Nakatsuka A, Takaki H, et al. Radiofrequency ablation for the treatment of unresectable lung metastases in patients with colorectal cancer: a multicenter study in Japan. J Vasc Interv Radiol. 2007;18(3):393–8.

    Article  PubMed  Google Scholar 

  18. Antoch G, Vogt FM, Veit P, Freudenberg LS, Blechschmid N, Dirsch O, et al. Assessment of liver tissue after radiofrequency ablation: findings with different imaging procedures. J Nucl Med. 2005;46(3):520–5.

    PubMed  Google Scholar 

  19. Barker DW, Zagoria RJ, Morton KA, Kavanagh PV, Shen P. Evaluation of liver metastases after radiofrequency ablation: utility of 18F-FDG PET and PET/CT. AJR Am J Roentgenol. 2005;184(4):1096–102.

    Article  PubMed  Google Scholar 

  20. Dierckx R, Maes A, Peeters M, Van de Wiele C. FDG PET for monitoring response to local and locoregional therapy in HCC and liver metastases. Q J Nucl Med Mol Imaging. 2009;53(3):336–42.

    CAS  PubMed  Google Scholar 

  21. Kele PG, de Jong KP, van der Jagt EJ. Increase in volume of ablation zones during follow-up is highly suggestive of ablation site recurrence in colorectal liver metastases treated with radiofrequency ablation. J Vasc Interv Radiol. 2012;23(4):537–44.

    Article  PubMed  Google Scholar 

  22. Kuehl H, Antoch G, Stergar H, Veit-Haibach P, Rosenbaum-Krumme S, Vogt F, et al. Comparison of FDG-PET, PET/CT and MRI for follow-up of colorectal liver metastases treated with radiofrequency ablation: initial results. Eur J Radiol. 2008;67(2):362–71.

    Article  PubMed  Google Scholar 

  23. Langenhoff BS, Oyen WJ, Jager GJ, Strijk SP, Wobbes T, Corstens FH, et al. Efficacy of fluorine-18-deoxyglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: a prospective study. J Clin Oncol. 2002;20(22):4453–8.

    Article  CAS  PubMed  Google Scholar 

  24. Sahin DA, Agcaoglu O, Chretien C, Siperstein A, Berber E. The utility of PET/CT in the management of patients with colorectal liver metastases undergoing laparascopic radiofrequency thermal ablation. Ann Surg Oncol. 2012;19(3):850–5.

    Article  PubMed  Google Scholar 

  25. Veit P, Kuhle C, Beyer T, Kuehl H, Herborn CU, Borsch G, et al. Whole body positron emission tomography/computed tomography (PET/CT) tumour staging with integrated PET/CT colonography: technical feasibility and first experiences in patients with colorectal cancer. Gut. 2006;55(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  26. Sharma A, Lanuti M, He W, Palmer EL, Shepard JA, Digumarthy SR. Increase in fluorodeoxyglucose positron emission tomography activity following complete radiofrequency ablation of lung tumors. J Comput Assist Tomogr. 2013;37(1):9–14.

    Article  PubMed  Google Scholar 

  27. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009;50 Suppl 1:11S–20S.

    Article  CAS  PubMed  Google Scholar 

  28. Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49(3):480–508.

    Article  PubMed  Google Scholar 

  29. Purandare NC, Rangarajan V, Shah SA, Sharma AR, Kulkarni SS, Kulkarni AV, et al. Therapeutic response to radiofrequency ablation of neoplastic lesions: FDG PET/CT findings. Radiographics. 2011;31(1):201–13.

    Article  PubMed  Google Scholar 

  30. Okuma T, Matsuoka T, Okamura T, Wada Y, Yamamoto A, Oyama Y, et al. 18F-FDG small-animal PET for monitoring the therapeutic effect of CT-guided radiofrequency ablation on implanted VX2 lung tumors in rabbits. J Nucl Med. 2006;47(8):1351–8.

    PubMed  Google Scholar 

  31. Itti E, Juweid ME, Haioun C, Yeddes I, Hamza-Maaloul F, El Bez I, et al. Improvement of early 18F-FDG PET interpretation in diffuse large B-cell lymphoma: importance of the reference background. J Nucl Med 2010;51(12):1857–62.

    Article  PubMed  Google Scholar 

  32. Lin C, Itti E, Haioun C, Petegnief Y, Luciani A, Dupuis J, et al. Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J Nucl Med. 2007;48(10):1626–32.

    Article  PubMed  Google Scholar 

  33. Graham MM, Badawi RD, Wahl RL. Variations in PET/CT methodology for oncologic imaging at U.S. academic medical centers: an imaging response assessment team survey. J Nucl Med. 2011;52(2):311–7.

    Article  PubMed  Google Scholar 

  34. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47(5):885–95.

    PubMed  Google Scholar 

  35. Higaki F, Okumura Y, Sato S, Hiraki T, Gobara H, Mimura H, et al. Preliminary retrospective investigation of FDG-PET/CT timing in follow-up of ablated lung tumor. Ann Nucl Med. 2008;22(3):157–63.

    Article  PubMed  Google Scholar 

  36. Deandreis D, Al GA, Leboulleux S, Lacroix L, Garsi JP, Talbot M, et al. Do histological, immunohistochemical and metabolic (radioiodine and fluorodeoxyglucose uptake) patterns of metastatic thyroid cancer correlate with patient outcome? Endocr Relat Cancer. 2011;18:159–69.

    Article  CAS  PubMed  Google Scholar 

  37. Suzawa N, Yamakado K, Takao M, Taguchi O, Yamada T, Takeda K. Detection of local tumor progression by 18F-FDG PET/CT following lung radiofrequency ablation: PET versus CT. Clin Nucl Med. 2013;38(4):e166–70.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the French Ministry of Health for financial support, Béatrice Gonzales for data collection and control and Pippa McKelvie-Sebileau of Institut Bergonié for assistance with medical writing.

Disclosures

The authors have no disclosures to declare.

Funding source

This work was supported by a PHRC 2006 (Programme Hospitalier de Recherche Clinique) of the French Ministry of Health.

Prior presentations

This work was presented at the Society of Nuclear Medicine Annual Meeting, San Antonio, June 2011, and the Cardiovascular and Interventional Radiological Society of Europe Annual Meeting, Munich, September 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Bonichon.

Additional information

The reference of the study according to the international clinical trials base CLINTRIAL (www.clinicaltrials.gov) is NCT 00382252.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonichon, F., Palussière, J., Godbert, Y. et al. Diagnostic accuracy of 18F-FDG PET/CT for assessing response to radiofrequency ablation treatment in lung metastases: a multicentre prospective study. Eur J Nucl Med Mol Imaging 40, 1817–1827 (2013). https://doi.org/10.1007/s00259-013-2521-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2521-9

Keywords

Navigation