Skip to main content

Advertisement

Log in

Compressional wave velocity for iron hydrides to 100 gigapascals via picosecond acoustics

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We performed synchrotron X-ray diffraction (XRD) and picosecond acoustic measurements on iron hydrides (FeHX) synthesized in laser-heated diamond anvil cells at pressures up to 100 GPa and 300 K. The obtained XRD data reveals that hcp FeH1.1, hcp FeH0.3, and fcc FeH1.0 were synthesized, and we determined the compressional wave velocities (VP) of the latter two phases. We discovered that the VP–density (ρ) relationships for fcc FeH1.0 changed between 8.7 and 9.2 g/cm3 (at about 60 GPa), which may be due to a magnetic transition. A comparison of the preliminary reference Earth model (PREM) with a Birch’s law extrapolation considering the temperature effect of our experimental VPρ results support the hypothesis of hydrogen presence in the Earth’s inner core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akahama Y, Kawamura H (2004) High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range. J Appl Phys 96:3748–3751

    Article  Google Scholar 

  • Antonangeli D, Ohtani E (2015) Sound velocity of hcp-Fe at high pressure: experimental constraints, extrapolations and comparison with seismic models. Prog Earth Planet Sci 2:3

    Article  Google Scholar 

  • Antonov VE, Cornell K, Fedotov VK, Kolesnikov AI, Ponyatovsky EG, Shiryaev VI, Wipf H (1998) Neutron diffraction investigation of the dhcp and hcp iron hydrides and deuterides. J Alloy Compd 264:214–222

    Article  Google Scholar 

  • Badding JV, Hemley RJ, Mao HK (1991) High-pressure chemistry of hydrogen in metals: in situ study of iron hydride. Science 253:421–424

    Article  Google Scholar 

  • Bazhanova ZG, Oganov AR, Gianola O (2012) Fe–C and Fe–H systems at pressures of the Earth’s inner core. Phys Usp 55:489–497

    Article  Google Scholar 

  • Birch F (1952) Elasticity and constitution of the Earth’s interior. J Geophys Res 57:227–286

    Article  Google Scholar 

  • Birch F (1961) The velocity of compressional waves in rocks to 10 kilobars: 2. J Geophys Res 66:2199–2224

    Article  Google Scholar 

  • Caracas R (2015) The influence of hydrogen on the seismic properties of solid iron. Geophys Res Lett 42:3780–3785

    Article  Google Scholar 

  • Chi Z, Nguyen H, Matsuoka T, Kagayama T, Hirao N, Ohishi Y, Shimizu K (2011) Cryogenic implementation of charging diamond anvil cells with H2 and D2. Rev Sci Instrum 82:105109

    Article  Google Scholar 

  • Decremps F, Antonangeli D, Gauthier M, Ayrinhac S, Morand M, Marchand GL, Bergame F, Philippe J (2014) Sound velocity of iron up to 152 GPa by picosecond acoustics in diamond anvil cell. Geophys Res Lett 41:1459–1464

    Article  Google Scholar 

  • Dewaele A, Loubeyre P, Occelli F, Mezouar M, Dorogokupets PI, Torrent M (2006) Quasihydrostatic equation of state of iron above 2 Mbar. Phys Rev Lett 97:215504

    Article  Google Scholar 

  • Dorogokupets PI, Dymshits AM, Litasov KD, Sokolova TS (2017) Thermodynamics and equations of state of iron to 350 GPa and 6000 K. Sci Rep 7:41863

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Edmund E, Antonangeli D, Decremps F, Miozzi F, Morard G, Boulard E, Clark AN, Ayrinhac S, Gauthier M, Morand M, Mezouar M (2019) Velocity-density systematics of Fe-5wt%Si: constraints on Si content in the Earth’s inner core. J Geophys Res 124:3436–3447

    Article  Google Scholar 

  • Elsässer C, Zhu J, Louie SG, Meyer B, Fähnle M, Chan CT (1998) Ab initio study of iron and iron hydride: II. Structural and magnetic properties of close-packed Fe and FeH. J Phys Cond Matt 10:5113–5129

    Article  Google Scholar 

  • Fukai Y (1992) Some properties of the Fe-H system at high pressures and temperatures, and their implications for the Earth’s core. High-pressure research: application to earth and planetary sciences. American Geophysical Union, Washington, pp 373–385

    Google Scholar 

  • Fukai Y, Akimoto S-i (1983) Hydrogen in the Earth’s core experimental approach. Proc Jpn Acad 59:158–162

    Article  Google Scholar 

  • Gomi H, Fei Y, Yoshino T (2018) The effects of ferromagnetism and interstitial hydrogen on the equation of states of hcp and dhcp FeHx: implications for the Earth’s inner core age. Am Miner 103:1271–1281

    Article  Google Scholar 

  • Gomi H, Yoshino T (2018) Impurity Resistivity of fcc and hcp Fe-based alloys: thermal stratification at the top of the core of super-Earths. Front Earth Sci 6:217

    Article  Google Scholar 

  • He Y, Sun S, Kim DY, Jang BG, Li H, Mao H-k (2022) Superionic iron alloys and their seismic velocities in Earth’s inner core. Nature 602:258–262

    Article  Google Scholar 

  • Hirao N, Kawaguchi SI, Hirose K, Shimizu K, Ohtani E, Ohishi Y (2020) New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8. Matt Radiat Extremes 5:018403

    Article  Google Scholar 

  • Hirao N, Kondo T, Ohtani E, Takemura K, Kikegawa T (2004) Compression of iron hydride to 80 GPa and hydrogen in the Earth’s inner core. Geophys Res Lett 31:L06616

    Article  Google Scholar 

  • Hirose K, Wood B, Vočadlo L (2021) Light elements in the Earth’s core. Nature Rev Earth Environ 2:645–658

    Article  Google Scholar 

  • Ikuta D, Ohtani E, Sano-Furukawa A, Shibazaki Y, Terasaki H, Yuan L, Hattori T (2019) Interstitial hydrogen atoms in face-centered cubic iron in the Earth’s core. Sci Rep 9:7108

    Article  Google Scholar 

  • Isaev EI, Skorodumova NV, Ahuja R, Vekilov YK, Johansson B (2007) Dynamical stability of Fe-H in the Earth’s mantle and core regions. Proc Natl Acad Sci USA 104:9168–9171

    Article  Google Scholar 

  • Ishimatsu N, Shichijo T, Matsushima Y, Maruyama H, Matsuura Y, Tsumuraya T, Shishidou T, Oguchi T, Kawamura N, Mizumaki M, Matsuoka T, Takemura K (2012) Hydrogen-induced modification of the electronic structure and magnetic states in Fe Co, and Ni monohydrides. Phys Rev B 86:104430

    Article  Google Scholar 

  • Kakizawa S, Shito C, Mori Y, Saitoh H, Aoki K, Kagi H (2021) Revised α/ε′–γ phase boundaries for the Fe–H system. Solid State Commun 340:114542

    Article  Google Scholar 

  • Kato C, Umemoto K, Ohta K, Tagawa S, Hirose K, Ohishi Y (2020) Stability of fcc phase FeH to 137 GPa. Am Miner 105:917–921

    Article  Google Scholar 

  • Lin J-F, Fei Y, Sturhahn W, Zhao J, Mao H-k, Hemley RJ (2004) Magnetic transition and sound velocities of Fe3S at high pressure: implications for earth and planetary cores. Earth Planet Sci Lett 226:33–40

    Article  Google Scholar 

  • Machida A, Saitoh H, Hattori T, Sano-Furukawa A, Funakoshi K-I, Sato T, Orimo S-I, Aoki K (2019) Hexagonal close-packed iron hydride behind the conventional phase diagram. Sci Rep 9:12290

    Article  Google Scholar 

  • Machida A, Saitoh H, Sugimoto H, Hattori T, Sano-Furukawa A, Endo N, Katayama Y, Iizuka R, Sato T, Matsuo M, Orimo S, Aoki K (2014) Site occupancy of interstitial deuterium atoms in face-centred cubic iron. Nature Commun 5:5063

    Article  Google Scholar 

  • Mao WL, Sturhahn W, Heinz DL, Mao H, Shu J, Hemley RJ (2004) Nuclear resonant x-ray scattering of iron hydride at high pressure. Geophys Res Lett 31:L15618

    Article  Google Scholar 

  • Martorell B, Brodholt J, Wood IG, Vočadlo L (2013) The effect of nickel on the properties of iron at the conditions of Earth’s inner core: Ab initio calculations of seismic wave velocities of Fe–Ni alloys. Earth Planet Sci Lett 365:143–151

    Article  Google Scholar 

  • Martorell B, Wood IG, Brodholt J, Vočadlo L (2016) The elastic properties of hcp-Fe1-xSix at earth’s inner-core conditions. Earth Planet Sci Lett 451:89–96

    Article  Google Scholar 

  • Murphy CA (2016) Hydrogen in the earth’s core. Deep Earth. John Wiley & Sons Inc, Hoboken, pp 253–264

    Book  Google Scholar 

  • Narygina O, Dubrovinsky LS, McCammon CA, Kurnosov A, Kantor IY, Prakapenka VB, Dubrovinskaia NA (2011) X-ray diffraction and Mössbauer spectroscopy study of fcc iron hydride FeH at high pressures and implications for the composition of the earth’s core. Earth Planet Sci Lett 307:409–414

    Article  Google Scholar 

  • Ohta K, Ichimaru K, Einaga M, Kawaguchi S, Shimizu K, Matsuoka T, Hirao N, Ohishi Y (2015) Phase boundary of hot dense fluid hydrogen. Sci Rep 5:16560

    Article  Google Scholar 

  • Ohta K, Suehiro S, Hirose K, Ohishi Y (2019) Electrical resistivity of fcc phase iron hydrides at high pressures and temperatures. Comptes Rendus Geosci 351:147–153

    Article  Google Scholar 

  • Okuchi T (1997) Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278:1781–1784

    Article  Google Scholar 

  • Pepin CM, Dewaele A, Geneste G, Loubeyre P, Mezouar M (2014) New iron hydrides under high pressure. Phys Rev Lett 113:265504

    Article  Google Scholar 

  • Piet H, Chizmeshya AVG, Chen B, Chariton S, Greenberg E, Prakapenka VB, Shim S-H (2021) Effect of nickel on the high-pressure phases in FeH. Phys Rev B 104:224106

    Article  Google Scholar 

  • Pozzo M, Davies C, Gubbins D, Alfè D (2014) Thermal and electrical conductivity of solid iron and iron–silicon mixtures at Earth’s core conditions. Earth Planet Sci Lett 393:159–164

    Article  Google Scholar 

  • Saitoh H, Machida A, Sugimoto H, Yagi T, Aoki K (2017) P-V–T relation of the Fe–H system under hydrogen pressure of several gigapascals. J Alloys Compd 706:520–525

    Article  Google Scholar 

  • Sakairi T, Sakamaki T, Ohtani E, Fukui H, Kamada S, Tsutsui S, Uchiyama H, Baron AQR (2018) Sound velocity measurements of hcp Fe-Si alloy at high pressure and high temperature by inelastic X-ray scattering. Am Miner 103:85–90

    Article  Google Scholar 

  • Sakamaki T, Ohtani E, Fukui H, Kamada S, Takahashi S, Sakairi T, Takahata A, Sakai T, Tsutsui S, Ishikawa D, Shiraishi R, Seto Y, Tsuchiya T, Baron AQ (2016) Constraints on Earth’s inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions. Sci Adv 2:e1500802

    Article  Google Scholar 

  • Shibazaki Y, Ohtani E, Terasaki H, Suzuki A, Funakoshi K-i (2009) Hydrogen partitioning between iron and ringwoodite: implications for water transport into the Martian core. Earth Planet Sci Lett 287:463–470

    Article  Google Scholar 

  • Sakamaki K, Takahashi E, Nakajima Y, Nishihara Y, Funakoshi K, Suzuki T, Fukai Y (2009) Melting phase relation of FeHx up to 20 GPa: implication for the temperature of the Earth’s core. Phys Earth Planet Inter 174:192–201

    Article  Google Scholar 

  • Shibazaki Y, Ohtani E, Fukui H, Sakai T, Kamada S, Ishikawa D, Tsutsui S, Baron AQR, Nishitani N, Hirao N, Takemura K (2012) Sound velocity measurements in dhcp-FeH up to 70 GPa with inelastic X-ray scattering: implications for the composition of the Earth’s core. Earth Planet Sci Lett 313–314:79–85

    Article  Google Scholar 

  • Skorodumova NV, Ahuja R, Johansson B (2004) Influence of hydrogen on the stability of iron phases under pressure. Geophys Res Lett 31:L08601

    Article  Google Scholar 

  • Stevenson DJ (1977) Hydrogen in the earth’s core. Nature 268:130–131

    Article  Google Scholar 

  • Tagawa S, Ohta K, Hirose K, Kato C, Ohishi Y (2016) Compression of Fe–Si–H alloys to core pressures. Geophys Res Lett 43:3686–3692

    Article  Google Scholar 

  • Tagawa S, Sakamoto N, Hirose K, Yokoo S, Hernlund J, Ohishi Y, Yurimoto H (2021) Experimental evidence for hydrogen incorporation into Earth’s core. Nature Comm 12:2588

    Article  Google Scholar 

  • Terasaki H, Kamada S, Sakai T, Ohtani E, Hirao N, Ohishi Y (2011) Liquidus and solidus temperatures of a Fe–O–S alloy up to the pressures of the outer core: implication for the thermal structure of the Earth’s core. Earth Planet Sci Lett 304:559–564

    Article  Google Scholar 

  • Thompson EC, Davis AH, Bi W, Zhao J, Alp EE, Zhang D, Greenberg E, Prakapenka VB, Campbell AJ (2018) High-pressure geophysical properties of Fcc Phase FeHX. Geochem Geophys Geosys 19:305–314

    Article  Google Scholar 

  • Ueda Y, Matsui M, Yokoyama A, Tange Y, Funakoshi K-i (2008) Temperature-pressure-volume equation of state of the B2 phase of sodium chloride. J Appl Phys 103:113513

    Article  Google Scholar 

  • Wakamatsu T, Ohta K, Yagi T, Hirose K, Ohishi Y (2018) Measurements of sound velocity in iron–nickel alloys by femtosecond laser pulses in a diamond anvil cell. Phys Chem Miner 45:589–595

    Article  Google Scholar 

  • Wang W, Li Y, Brodholt JP, Vočadlo L, Walter MJ, Wu Z (2021) Strong shear softening induced by superionic hydrogen in Earth’s inner core. Earth Planet Sci Lett 568:117014

    Article  Google Scholar 

  • Yuan L, Ohtani E, Ikuta D, Kamada S, Tsuchiya J, Naohisa H, Ohishi Y, Suzuki A (2018) Chemical reactions between Fe and H2O up to megabar pressures and implications for water storage in the Earth’s mantle and core. Geophys Res Lett 45:1330–1338

    Article  Google Scholar 

Download references

Acknowledgements

S. I. Kawaguchi helped experiments at SPring-8. The synchrotron XRD experiments were performed at the BL10XU of SPring-8 (Proposal No. 2019A0072, 2019B0072, 2020A0072, 2020B0072, and 2021A0072). This work was supported by JSPS KAKENHI (Grant No. 18J21664 and 19H00716). We would like to thank two anonymous reviewers for very helpful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Ohta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakamatsu, T., Ohta, K., Tagawa, S. et al. Compressional wave velocity for iron hydrides to 100 gigapascals via picosecond acoustics. Phys Chem Minerals 49, 17 (2022). https://doi.org/10.1007/s00269-022-01192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-022-01192-8

Keywords

Navigation