Skip to main content

Advertisement

Log in

High-pressure study of azurite Cu3(CO3)2(OH)2 by synchrotron radiation X-ray diffraction and Raman spectroscopy

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The high-pressure properties of natural azurite [Cu3(CO3)2(OH)2] have been investigated by in situ synchrotron powder X-ray diffraction and Raman spectroscopy up to 11 and 16 GPa at room temperature, respectively. The results indicate that azurite is stable within the pressure region in this study. The pressure–volume data from in situ X-ray diffraction experiments were described by a third-order Birch–Murnaghan equation of state with V 0 = 304.5 (4) Å3, K 0 = 40 (2) GPa and K 0′ = 5.5 (6). The K 0 was obtained as 45.1 (8) GPa when K 0′ was fixed at 4. The axial compressional behavior of azurite was also fitted with a linearized third-order Birch–Murnaghan equation of state, showing an intense anisotropy with K a0 = 29.7 (9) GPa, K b0 = 25.0 (7) GPa and K c0 = 280 (55) GPa. In addition, the Raman spectroscopy of azurite in this study also presents the weak [OH] group and the rigid [CO3]2− group. The different high-pressure behaviors of azurite and malachite combined with the smaller isothermal bulk modulus compared with certain anhydrous carbonates and the obvious compression anisotropy of azurite were discussed with the experimental results in this study together with the results from previous studies. Furthermore, the effect of hydroxyl on the high-pressure behaviors of carbonates was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson DL, Anderson OL (1970) The bulk modulus–volume relationship for oxides. J Geophys Res 75:3494–3500

    Article  Google Scholar 

  • Angel RJ (2000) Equations of state. Rev Mineral Geochem 41:35–59

    Article  Google Scholar 

  • Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32

    Article  Google Scholar 

  • Anthony JW, Bideaux RA, Bladh KW, Nichols MC (1995) Handbook of mineralogy. Mineral Data Publ, Tucson

    Google Scholar 

  • Belokoneva E, Gubina YK, Forsyth J (2001) The charge density distribution and antiferromagnetic properties of azurite Cu3[CO3]2 (OH)2. Phys Chem Miner 28:498–507

    Article  Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–824

    Article  Google Scholar 

  • Boulard E, Menguy N, Auzende A, Benzerara K, Bureau H, Antonangeli D, Corgne A, Morard G, Siebert J, Perrillat JP (2012) Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J Geophys Res 117:B02208

    Google Scholar 

  • Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Joswig W, Kaminsky F (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9

    Article  Google Scholar 

  • Buob A, Luth RW, Schmidt MW, Ulmer P (2006) Experiments on CaCO3-MgCO3 solid solutions at high pressure and temperature. Am Miner 91:435–440

    Article  Google Scholar 

  • Buzgar N, Apopei AI (2009) The Raman study of certain carbonates. Geologie Tomul L 2:97–112

    Google Scholar 

  • Chaney J, Santillán JD, Knittle E, Williams Q (2014) A high-pressure infrared and Raman spectroscopic study of BaCO3: the aragonite, trigonal and Pmmn structures. Phys Chem Miner. doi:10.1007/s00269-014-0702-0

    Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13

    Article  Google Scholar 

  • Dasgupta R, Chi H, Shimizu N, Buono AS, Walker D (2013) Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: implications for the origin and distribution of terrestrial carbon. Geochim Cosmochim Acta 102:191–212

    Article  Google Scholar 

  • Fan DW, Wei SY, Xie HS (2013) An in situ high-pressure X-ray diffraction experiment on hydroxyapophyllite. Chin Phys B 22:010702

    Article  Google Scholar 

  • Farfan G, Wang SB, Ma HW, Caracas R, Mao WL (2012) Bonding and structural changes in siderite at high pressure. Am Miner 97:1421–1426

    Article  Google Scholar 

  • Farfan GA, Boulard E, Wang S, Mao WL (2013) Bonding and electronic changes in rhodochrosite at high pressure. Am Mineral 98:1817–1823

    Article  Google Scholar 

  • Fei YW, Ricolleau A, Frank M, Mibe K, Shen G, Prakapenka V (2007) Toward an internally consistent pressure scale. Proc Natl Acad Sci USA 104:9182–9186

    Article  Google Scholar 

  • Fiquet G, Reynard B (1999) High-pressure equation of state of magnesite: new data and a reappraisal. Am Mineral 84:856–860

    Google Scholar 

  • Frost RL, Martens WN, Rintoul L, Mahmutagic E, Kloprogge JT (2002) Raman spectroscopic study of azurite and malachite at 298 and 77 K. J Raman Spectrosc 33:252–259

    Article  Google Scholar 

  • Gaillard F, Malki M, Iacono-Marziano G, Pichavant M, Scaillet B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 322:1363–1365

    Article  Google Scholar 

  • Gao J, Huang WF, Wu X, Fan DW, Wu ZY, Xia DG, Qin S (2014a) Compressibility of carbonophosphate bradleyite Na3Mg(CO3)(PO4) by X-ray diffraction and Raman spectroscopy. Phys Chem Miner. doi:10.1007/s00269-014-0710-0

    Google Scholar 

  • Gao J, Zhu F, Lai XJ, Huang R, Qin S, Chen DL, Liu J, Zheng LR, Wu X (2014b) Compressibility of a natural smithsonite ZnCO3 up to 50 GPa. High Press Res 34:89–99

    Article  Google Scholar 

  • Gattow Gv, Zemann J (1958) Neubestimmung der Kristallstruktur von Azurite, Cu3(OH)2(CO3)2. Acta Crystallogr 11:866–872

    Article  Google Scholar 

  • Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates Part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Miner 20:1–18

    Google Scholar 

  • Halliday D, Resnick R, Walker J (2010) Fundamentals of physics extended. Wiley, New York

    Google Scholar 

  • Hammersley J (1996) Fit2D report. European Synchrotron Radiation Facility, Grenoble

    Google Scholar 

  • Holl C, Smyth J, Laustsen H, Jacobsen S, Downs R (2000) Compression of witherite to 8 GPa and the crystal structure of BaCO3II. Phys Chem Miner 27:467–473

    Article  Google Scholar 

  • Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427:60–63

    Article  Google Scholar 

  • Jacobsen SD (2006) Effect of water on the equation of state of nominally anhydrous minerals. Rev Mineral Geochem 62:321–342

    Article  Google Scholar 

  • Jana D, Walker D (1997) The impact of carbon on element distribution during core formation. Geochim Cosmochim Acta 61:2759–2763

    Article  Google Scholar 

  • Keppler H, Wiedenbeck M, Shcheka SS (2003) Carbon solubility in olivine and the mode of carbon storage in the Earth’s mantle. Nature 424:414–416

    Article  Google Scholar 

  • Klein C, Hurlbut CS, Dana JD (1993) Manual of mineralogy. Wiley, New York

    Google Scholar 

  • Lager GA, Downs RT, Origlieri M, Garoutte R (2002) High-pressure single-crystal X-ray diffraction study of katoite hydrogarnet: evidence for a phase transition from Ia3d → Ir 2+ M symmetry at 5 GPa. Am Mineral 87:642–647

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748

  • Lavina B, Dera P, Downs RT, Prakapenka V, Rivers M, Sutton S, Nicol M (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophys Res Lett 36:L23306

    Article  Google Scholar 

  • Lavina B, Dera P, Downs RT, Yang W, Sinogeikin S, Meng Y, Shen G, Schiferl D (2010) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys Rev B 82:064110

    Article  Google Scholar 

  • Le Bail A, Duroy H, Fourquet J (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452

    Article  Google Scholar 

  • Lin CC, Liu LG (1997a) High pressure phase transformations in aragonite-type carbonates. Phys Chem Miner 24:149–157

    Article  Google Scholar 

  • Lin CC, Liu LG (1997b) High-pressure Raman spectroscopic study of post-aragonite phase transition in witherite (BaCO3). Eur J Mineral 9:785–792

    Article  Google Scholar 

  • Lin JF, Liu J, Jacobs C, Prakapenka VB (2012) Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. Am Mineral 97:583–591

    Article  Google Scholar 

  • Litasov KD, Shatskiy A, Gavryushkin PN, Sharygin IS, Dorogokupets PI, Dymshits AM, Ohtani E, Higo Y, Funakoshi K (2013) P–V–T equation of state of siderite to 33 GPa and 1673 K. Phys Earth Planet Inter 224:83–87

    Article  Google Scholar 

  • Liu LG, Lin CC (1997) A calcite → aragonite-type phase transition in CdCO3. Am Mineral 82:643–646

    Google Scholar 

  • Logvinova AM, Wirth R, Fedorova EN, Sobolev NV (2008) Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. Eur J Mineral 20:317–331

    Article  Google Scholar 

  • Mao HK, Xu JA, Bell P (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Mao Z, Armentrout M, Rainey E, Manning CE, Dera P, Prakapenka VB, Kavner A (2011) Dolomite III: a new candidate lower mantle carbonate. Geophys Res Lett 38:L22303

    Google Scholar 

  • Martinez I, Zhang J, Reeder RJ (1996) In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature; evidence for dolomite breakdown to aragonite and magnesite. Am Mineral 81:611–624

    Google Scholar 

  • Mattei E, De Vivo G, De Santis A, Gaetani C, Pelosi C, Santamaria U (2008) Raman spectroscopic analysis of azurite blackening. J Raman Spectrosc 39:302–306

    Article  Google Scholar 

  • Merlini M, Perchiazzi N, Hanfland M, Bossak A (2012) Phase transition at high pressure in Cu2CO3 (OH)2 related to the reduction of the Jahn–Teller effect. Acta Cryst A 68:266–274

    Article  Google Scholar 

  • Minch R, Dubrovinsky L, Kurnosov A, Ehm L, Knorr K, Depmeier W (2010a) Raman spectroscopic study of PbCO3 at high pressures and temperatures. Phys Chem Miner 37:45–56

    Article  Google Scholar 

  • Minch R, Seoung DH, Ehm L, Winkler B, Knorr K, Peters L, Borkowski L, Parise J, Lee Y, Dubrovinsky L (2010b) High-pressure behavior of otavite (CdCO3). J Alloys Compd 50:251–257

    Article  Google Scholar 

  • Nagai T, Ishido T, Seto Y, Nishio-Hamane D, Sata N, Fujino K (2010) Pressure-induced spin transition in FeCO3-siderite studied by X-ray diffraction measurements. J Phys Conf Ser 1:012002

    Article  Google Scholar 

  • Oganov AR, Glass CW, Ono S (2006) High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet Sci Lett 241:95–103

    Article  Google Scholar 

  • Oganov AR, Ono S, Ma Y, Glass CW, Garcia A (2008) Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle. Earth Planet Sci Lett 273:38–47

    Article  Google Scholar 

  • Ohtani E (2006) The effect of water on mantle phase transitions. Rev Miner Geochem 62:397–420

    Article  Google Scholar 

  • Ono S (2007a) High-pressure phase transformation in MnCO3: a synchrotron XRD study. Mineral Mag 71:105–111

    Article  Google Scholar 

  • Ono S (2007b) New high-pressure phases in BaCO3. Phys Chem Miner 34:215–221

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y, Tsuchiya J (2005) Post-aragonite phase transformation in CaCO3 at 40 GPa. Am Mineral 90:667–671

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y (2007) High-pressure transition of CaCO3. Am Mineral 92:1246–1249

    Article  Google Scholar 

  • Ono S, Brodholt JP, Price GD (2008) Phase transitions of BaCO3 at high pressures. Mineral Mag 72:659–665

    Article  Google Scholar 

  • Pavese A, Davide L, Pischedda V (2001) Elastic properties of andradite and grossular, by synchrotron X-ray diffraction at high pressure conditions. Eur J Mineral 13:929–937

    Article  Google Scholar 

  • Pippinger T, Miletich R, Effenberger H, Hofer G, Lotti P, Merlini M (2014) High-pressure polymorphism and structural transitions of norsethite, BaMg(CO3)2. Phys Chem Miner 41:737–755

    Article  Google Scholar 

  • Redfern SA (2000) Structural variations in carbonates. Rev Mineral Geochem 41:289–308

    Article  Google Scholar 

  • Redfern SA, Angel RJ (1999) High-pressure behaviour and equation of state of calcite, CaCO3. Contrib Mineral Petrol 134:102–106

    Article  Google Scholar 

  • Ross NL (1997) The equation of state and high-pressure behavior of magnesite. Am Mineral 82:682–688

    Google Scholar 

  • Ross NL, Reeder RJ (1992) High-pressure structural study of dolomite and ankerite. Am Mineral 77:412–421

    Google Scholar 

  • Rule K, Reehuis M, Gibson M, Ouladdiaf B, Gutmann M, Hoffmann JU, Gerischer S, Tennant D, Süllow S, Lang M (2011) Magnetic and crystal structure of azurite Cu3(CO3)2(OH)2 as determined by neutron diffraction. Phys Rev B 83:104401

    Article  Google Scholar 

  • Seto Y, Hamane D, Nagai T, Fujino K (2008) Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation. Phys Chem Miner 35:223–229

    Article  Google Scholar 

  • Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr 32:751–767

    Article  Google Scholar 

  • Skorodumova NV, Belonoshko AB, Huang L, Ahuja R, Johansson B (2005) Stability of the MgCO3 structures under lower mantle conditions. Am Mineral 90:1008–1011

    Article  Google Scholar 

  • Smyth JR, Frost DJ, Nestola F (2005) Hydration of olivine and the Earth’s deep water cycle. Geochim Cosmochim Acta 69:A746

    Google Scholar 

  • Stachel T, Harris JW, Brey GP, Joswig W (2000) Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contrib Mineral Petrol 140:16–27

    Article  Google Scholar 

  • Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O, Kikegawa T (2001) Phase relations of CaCO3 at high pressure and high temperature. Am Mineral 86:997–1002

    Article  Google Scholar 

  • Townsend JP, Chang Y-Y, Lou X, Merino M, Kirklin SJ, Doak JW, Issa A, Wolverton C, Tkachev SN, Dera P, Jacobsen SD (2013) Stability and equation of state of post-aragonite BaCO3. Phys Chem Miner 40:447–453

    Article  Google Scholar 

  • Wang A, Pasteris JD, Meyer HO, Dele-Duboi ML (1996) Magnesite-bearing inclusion assemblage in natural diamond. Earth Planet Sci Lett 141:293–306

    Article  Google Scholar 

  • Xu J, Ma M, Wei S, Hu X, Liu Y, Liu J, Fan D, Xie H (2014) Equation of state of adamite up to 11 GPa: a synchrotron X-ray diffraction study. Phys Chem Miner 41:547–554

    Article  Google Scholar 

  • Zha CS, Duffy TS, Downs RT, Mao HK, Hemley RJ (1998) Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth Planet Sci Lett 159:25–33

    Article  Google Scholar 

  • Zhang J, Reeder RJ (1999) Comparative compressibilities of calcite-structure carbonates: deviations from empirical relations. Am Mineral 84:861–870

    Google Scholar 

  • Zhang YF, Liu J, Qin ZX, Lin CL, Xiong L, Li R, Bai LG (2013) A high-pressure study of PbCO3 by XRD and Raman spectroscopy. Chin Phys C 37:1–5

    Google Scholar 

  • Zigan F, Schuster HD (1972) Refinement of azurite structure, Cu3(OH)2(CO3)2 by neutron diffraction. Z Kristallogr Kristallgeom Kristallphys Kristallchem 135:416–436

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Guohong Gong for his help with the conventional powder X-ray analysis and the beamline scientists of BL15U1 of the Shanghai Synchrotron Radiation Facility (SSRF) and 4W2 of the Beijing Synchrotron Radiation Facility (BSRF) for the technical help. This work is supported by the National Natural Science Foundation of China (Grant Nos. 41374107 and 41274105), the Youth Innovative Technology Talents program of Institute of geochemistry, Chinese academy of Sciences (2013, to Dawei Fan) and the Western Doctor Special fund of the West Light Foundation of Chinese academy of Sciences (2011, to Dawei Fan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Kuang, Y., Zhang, B. et al. High-pressure study of azurite Cu3(CO3)2(OH)2 by synchrotron radiation X-ray diffraction and Raman spectroscopy. Phys Chem Minerals 42, 805–816 (2015). https://doi.org/10.1007/s00269-015-0764-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0764-7

Keywords

Navigation