Skip to main content

Advertisement

Log in

Elasticity of single-crystal quartz to 10 GPa

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The second-order elastic constants of quartz were determined by Brillouin spectroscopy to 10 GPa in a diamond anvil cell. All elastic constants exhibit smooth pressure trends. A decrease in the magnitudes of C 14 and C 66 with pressure is observed, while C 44 shows a weak pressure dependence. Our measured elastic constants are more consistent with previous density functional theory calculations than with earlier experimental results. Aggregate elastic moduli were calculated and fit to a finite-strain equation of state, yielding values for the pressure derivatives of the adiabatic bulk modulus, K 0Sʹ, and shear modulus, G 0ʹ, of α-quartz of 6.2(2) and 0.9(1), respectively. The equation of state obtained from our data is consistent with static X-ray diffraction data. A finite-strain extrapolation of our data predicts a violation of a Born stability criterion, indicating a mechanical instability in the structure, at ~26 GPa which is broadly consistent with the pressure range at which a phase transition and pressure-induced amorphization in quartz are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerman RJ, Sorrell C (1974) Thermal-expansion and high-low transformation in quartz.1. High-temperature X-ray studies. J Appl Crystallogr 7:461–467. doi:10.1107/S0021889874010211

    Article  Google Scholar 

  • Angel RJ, Allan DR, Miletich R, Finger LW (1997) The use of quartz as an internal pressure standard in high-pressure crystallography. J Appl Crystallogr 30:461–466. doi:10.1107/S0021889897000861

    Article  Google Scholar 

  • Angel RJ, Bujak M, Zhao J et al (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32. doi:10.1107/S0021889806045523

    Article  Google Scholar 

  • ANSI/IEEE standard 176-1988 (1988) IEEE Standard on Piezoelectricity. Institute of Electrical and Electronic Engineers, New York

  • Ballato A (2008) Basic material quartz and related innovations. Piezoelectricity. Springer, Berlin, pp 9–35

    Chapter  Google Scholar 

  • Binggeli N, Chelikowsky J (1992) Elastic instability in alpha-quartz under pressure. Phys Rev Lett 69:2220–2223. doi:10.1103/PhysRevLett.69.2220

    Article  Google Scholar 

  • Binggeli N, Keskar N, Chelikowsky J (1994) Pressure-induced amorphization, elastic instability, and soft modes in alpha-quartz. Phys Rev B 49:3075–3081. doi:10.1103/PhysRevB.49.3075

    Article  Google Scholar 

  • Birch F (1978) Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high-pressures and 300-degree-K. J Geophys Res 83:1257–1268. doi:10.1029/JB083iB03p01257

    Article  Google Scholar 

  • Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, London

    Google Scholar 

  • Calderon E, Gauthier M, Decremps F et al (2007) Complete determination of the elastic moduli of α-quartz under hydrostatic pressure up to 1 GPa: an ultrasonic study. J Phys: Condens Matter 19:436228. doi:10.1088/0953-8984/19/43/436228

    Google Scholar 

  • Carpenter MA, Salje EKH (1998) Elastic anomalies in minerals due to structural phase transitions. Eur J Miner 10:693–812

    Article  Google Scholar 

  • Choudhury N, Chaplot SL (2006) Ab initio studies of phonon softening and high-pressure phase transitions of α-quartz SiO2. Phys Rev B 73:094304. doi:10.1103/PhysRevB.73.094304

    Article  Google Scholar 

  • Christensen NI (1996) Poisson’s ratio and crustal seismology. J Geophys Res 101:3139. doi:10.1029/95JB03446

    Article  Google Scholar 

  • Duffy TS, Zha C, Downs RT et al (1995) Elasticity of forsterite to 16 GPa and the composition of the upper mantle. Nature 378:170–173. doi:10.1038/378170a0

    Article  Google Scholar 

  • Every AG (1980) General closed-form expressions for acoustic-waves in elastically anisotropic solids. Phys Rev B 22:1746–1760. doi:10.1103/PhysRevB.22.1746

    Article  Google Scholar 

  • Every AG, McCurdy AK (1992) The elastic constants of crystals. In: Nelson DF (ed) Landolt-Börnstein tables III29. Springer, Berlin/Heidelberg, pp 1–634

    Google Scholar 

  • Glinnemann J, King HE, Schulz H et al (1992) Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure. Z Für Krist 198:177–212. doi:10.1524/zkri.1992.198.3-4.177

    Article  Google Scholar 

  • Gregoryanz E, Hemley RJ, Mao H-k, Gillet P (2000) High-pressure elasticity of α-quartz: instability and ferroelastic transition. Phys Rev Lett 84:3117–3120. doi:10.1103/PhysRevLett.84.3117

    Article  Google Scholar 

  • Haines J, Léger JM, Gorelli F, Hanfland M (2001) Crystalline post-quartz phase in silica at high pressure. Phys Rev Lett 87:155503. doi:10.1103/PhysRevLett.87.155503

    Article  Google Scholar 

  • Hazen RM, Finger LW, Hemley RJ, Mao HK (1989) High-pressure crystal chemistry and amorphization of α-quartz. Solid State Commun 72:507–511. doi:10.1016/0038-1098(89)90607-8

    Article  Google Scholar 

  • Heaney PJ, Prewitt CT, Gibbs GV (1994) Silica: physical behavior, geochemistry and materials applications. Rev Mineralogy, 29 Mineralogical Society of America, Washington, DC

  • Hemingway BS (1987) Quartz-heat-capacities from 340-K to 1000-K and revised values for the thermodynamic properties. Am Miner 72:273–279

    Google Scholar 

  • Hemley RJ (1987) Pressure dependence of Raman spectra of SiO2 polymorphs: α-quartz, coesite, and stishovite. In: Manghnani H, Syono M (eds) High-pressure research in mineral physics. American Geophysical Union, pp 347–359

  • Hemley RJ, Jephcoat AP, Mao H-k et al (1988) Pressure-induced amorphization of crystalline silica. Nature 334:52–54. doi:10.1038/334052a0

    Article  Google Scholar 

  • Hemley RJ, Prewitt CT, Kingma KJ (1994) High-pressure behavior of silica. In: PJ Heaney, CT Prewitt, GV Gibbs (eds) Silica: physical behavior, geochemistry and materials applications. Rev Mineralogy, 29 Rev. Mineral. Geochem. pp 41–81

  • Heyliger P, Ledbetter H, Kim S (2003) Elastic constants of natural quartz. J Acoust Soc Am 114:644. doi:10.1121/1.1593063

    Article  Google Scholar 

  • Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372. doi:10.1016/0022-5096(63)90036-X

    Article  Google Scholar 

  • Holm B, Ahuja R (1999) Ab initio calculation of elastic constants of SiO2 stishovite and α-quartz. J Chem Phys 111:2071–2074. doi:10.1063/1.479475

    Article  Google Scholar 

  • Kimizuka H, Ogata S, Li J, Shibutani Y (2007) Complete set of elastic constants of α-quartz at high pressure: a first-principles study. Phys Rev B 75:054109. doi:10.1103/PhysRevB.75.054109

    Article  Google Scholar 

  • Kingma K, Hemley R, Mao H-k, Veblen D (1993a) New high-pressure transformation in alpha-quartz. Phys Rev Lett 70:3927–3930. doi:10.1103/PhysRevLett.70.3927

    Article  Google Scholar 

  • Kingma K, Meade C, Hemley R et al (1993b) Microstructural observations of alpha-quartz amorphization. Science 259:666–669

    Google Scholar 

  • Lakshtanov DL, Sinogeikin SV, Bass JD (2006) High-temperature phase transitions and elasticity of silica polymorphs. Phys Chem Miner 34:11–22. doi:10.1007/s00269-006-0113-y

    Article  Google Scholar 

  • Levien L, Prewitt CT, Weidner DJ (1980) Structure and elastic properties of quartz at pressure. Am Mineral 65:920–930

    Google Scholar 

  • Machon D, Meersman F, Wilding MC et al (2014) Pressure-induced amorphization and polyamorphism: inorganic and biochemical systems. Prog Mater Sci 61:216–282. doi:10.1016/j.pmatsci.2013.12.002

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800-Kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676. doi:10.1029/JB091iB05p04673

    Article  Google Scholar 

  • McSkimin HJ, Andreatch P Jr, Thurston RN (1965) Elastic moduli of quartz versus hydrostatic pressure at 25 and −195.8 C. J Appl Phys 36:1624–1632. doi:10.1063/1.1703099

    Article  Google Scholar 

  • Mirwald PW, Massonne H-J (1980) The low-high quartz and quartz-coesite transition to 40 kbar between 600 and 1600 C and some reconnaissance data on the effect of NaAlO2 component on the low quartz-coesite transition. J Geophys Res Solid Earth 85:6983–6990. doi:10.1029/JB085iB12p06983

    Article  Google Scholar 

  • Nye JF (1984) Physical properties of crystals: their representation by tensors and matrices. Clarendon Press, Oxford University Press, Oxford

    Google Scholar 

  • Oganov AR, Hemley RJ, Hazen RM, Jones AP (2013) Structure, bonding, and mineralogy of carbon at extreme conditions. In: Hazen RM, Jones AP, Baross JA (eds) Rev. Mineral, Geochem, pp 47–77

    Google Scholar 

  • Ogi H, Ohmori T, Nakamura N, Hirao M (2006) Elastic, anelastic, and piezoelectric coefficients of α-quartz determined by resonance ultrasound spectroscopy. J Appl Phys 100:053511. doi:10.1063/1.2335684

    Article  Google Scholar 

  • Ohno I (1990) Rectangular parallelepiped resonance method for piezoelectric-crystals and elastic-constants of alpha-quartz. Phys Chem Miner 17:371–378

    Article  Google Scholar 

  • Ohno I (1995) Temperature-variation of elastic properties of alpha-quartz up to the alpha–beta transition. J Phys Earth 43:157–169

    Article  Google Scholar 

  • Ohno I, Harada K, Yoshitomi C (2006) Temperature variation of elastic constants of quartz across the α–β transition. Phys Chem Miner 33:1–9. doi:10.1007/s00269-005-0008-3

    Article  Google Scholar 

  • Palmeri R, Frezzotti ML, Godard G, Davies RJ (2009) Pressure-induced incipient amorphization of α-quartz and transition to coesite in an eclogite from Antarctica: a first record and some consequences. J Metamorph Geol 27:685–705. doi:10.1111/j.1525-1314.2009.00843.x

    Article  Google Scholar 

  • Speziale S, Duffy TS (2002) Single-crystal elastic constants of fluorite (CaF2) to 9.3 GPa. Phys Chem Miner 29:465–472. doi:10.1007/s00269-002-0250-x

    Article  Google Scholar 

  • Tarumi R, Nakamura K, Ogi H, Hirao M (2007) Complete set of elastic and piezoelectric coefficients of α-quartz at low temperatures. J Appl Phys 102:113508. doi:10.1063/1.2816252

    Article  Google Scholar 

  • Tse J, Klug D (1991) Mechanical instability of alpha-quartz—a molecular-dynamics study. Phys Rev Lett 67:3559–3562. doi:10.1103/PhysRevLett.67.3559

  • Wang Q, Saunders GA, Lambson EF et al (1992) Temperature dependence of the acoustic-mode vibrational anharmonicity of quartz from 243 to 393 K. Phys Rev B 45:10242–10254. doi:10.1103/PhysRevB.45.10242

    Article  Google Scholar 

  • Wang Z, Liu Y, Song W et al (2011) A broadband spectroscopy method for ultrasonic wave velocity measurement under high pressure. Rev Sci Instrum 82:014501. doi:10.1063/1.3518953

    Article  Google Scholar 

  • Whitfield CH, Brody EM, Bassett WA (1976) Elastic moduli of NaCl by Brillouin scattering at high pressure in a diamond anvil cell. Rev Sci Instrum 47:942–947. doi:10.1063/1.1134778

    Article  Google Scholar 

  • Williams Q, Hemley R, Kruger M, Jeanloz R (1993) High-pressure infrared-spectra of alpha-quartz, coesite, stishovite and silica Glass. J Geophys Res-Solid Earth 98:22157–22170. doi:10.1029/93JB02171

    Article  Google Scholar 

  • Zha CS, Duffy TS, Downs RT et al (1998) Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth Planet Sci Lett 159:25–33. doi:10.1016/S0012-821X(98)00063-6

    Article  Google Scholar 

  • Zouboulis IS, Jiang F, Wang J, Duffy TS (2014) Single-crystal elastic constants of magnesium difluoride (MgF2) to 7.4 GPa. J Phys Chem Solids 75:136–141. doi:10.1016/j.jpcs.2013.09.014

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the NSF and the Carnegie-DOE Alliance Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Mao, Z., Jiang, F. et al. Elasticity of single-crystal quartz to 10 GPa. Phys Chem Minerals 42, 203–212 (2015). https://doi.org/10.1007/s00269-014-0711-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0711-z

Keywords

Navigation