Skip to main content

Basic Material Quartz and Related Innovations

  • Chapter
Piezoelectricity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 114))

Although material quartz is of scientific interest in its own right, its volume of usage and variety of applications dictate its technological importance.The technological prominence of α-quartz stems largely from the presence of piezoelectricity, combined with extremely low acoustic loss. It was one of the minerals with which the Brothers Curie first established the piezoelectric effect in 1880. In the early 1920s, the quartz resonator was first used for frequency stabilization. Temperature-compensated orientations (the AT and BT shear cuts) were introduced in the 1930s, and assured the technology’s success. By the late 1950s, growth of cultured bars became commercially viable, and in the early 1970s, cultured quartz use for electronic applications first exceeded that of the natural variety. The discovery of cuts that addressed compensation of stress and temperature transient effects occurred in the 1970s, and led to the introduction of compound cuts such as the SC, which hasboth a zero temperature coefficient of frequency, and is simultaneously stress-compensated [1–5]. Between 109 and 1010 quartz units per year were produced by 2000 at frequencies from below 1 kHz to above 10 GHz. Categories of application include resonators, filters, delay lines, transducers, sensors, signal processors, and actuators. Particularly noteworthy are the bulk- and surface-wave resonators; their uses span the gamut from disposable timepieces to highest precision oscillators for position-location, and picosecond timing applications. Stringent high-shock and high-pressure sensor operations are also enabled. Table 2.1 shows the major applications of quartz crystals. These applications are discussed subsequently in greater detail. For general background and historical developments, see [1,6–11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.G. Cady, Piezoelectricity (McGraw-Hill, New York, 1946)

    Google Scholar 

  2. E.P. EerNisse, in Proc. 29th Ann. Freq. Control Symp., pp. 1–4, US Army Electronics Command, Ft. Monmouth, NJ, May 1975

    Google Scholar 

  3. J.A. Küsters, J. Leach, in Proc. IEEE. vol. 65, no. 2, pp. 282–284, February (1977)

    Article  Google Scholar 

  4. A. Ballato, in Physical Acoustics: Principles and Methods, vol. 13, ed. by W.P. Mason, R.N. Thurston. (Academic Press, New York, 1977), Chap. 5, pp. 115–181, ISBN: 0-12-477913-1

    Google Scholar 

  5. S. R. Stein, J. R. Vig, in The Froelich/Kent Encyclopedia of Telecommunications, Vol. 3, ed. by F.E. Froehlich, A. Kent (Marcel Dekker, New York, 1992) pp. 445–500

    Google Scholar 

  6. R.B. Sosman, The Properties of Silica (Chemical Catalog Co., New York, 1927)

    Google Scholar 

  7. “Quartz crystal,” Bulletin 667, Mineral Facts and Problems, US Department of the Interior, Bureau of Mines, 1975

    Google Scholar 

  8. A. Ballato, J. R. Vig, in Encyclopedia of Applied Physics, Vol. 14, ed. by G. Trigg (VCH Publishers, New York, 1996), pp. 129–145, ISBN: 3-527-28136-3

    Google Scholar 

  9. D.J. Jones, S.E. Prasad, J.B. Wallace, Key Eng. Mater. 122–124, 71–144, (1996)

    Article  Google Scholar 

  10. IEEE Trans. Microwave Theory Tech. 49(4), part II, 741–847 (April 2001). Special Issue on Microwave Acoustic Wave Devices for Wireless Communications and Sensing. R. Weigel and K. Hashimoto, guest editors

    Google Scholar 

  11. R. Weigel, D.P. Morgan, J.M. Owens, A. Ballato, K.M. Lakin, K. Hashimoto, C. C. W. Ruppel, IEEE Trans. Microwave Theory Tech. 50(3), 738–749 (March 2002)

    Article  ADS  Google Scholar 

  12. C. Frondel, Dana’s System of Mineralogy, Volume II: Silica Minerals, (Wiley, New York, 1962)

    Google Scholar 

  13. B.K. Vainshtein, Fundamentals of Crystals: Symmetry, and Methods of Structural Crystallography, 2nd edn. (Springer-Verlag, Berlin, 1994), ISBN 3-540-56558-2

    Google Scholar 

  14. B.K. Vainshtein, V.M. Fridkin, V.L. Indenbom, Modern Crystallography II, (Springer-Verlag, Berlin, 1982), ISBN 3-540-10517-4

    Google Scholar 

  15. C. Klein, C.S. Hurlbut, Jr., Manual of Crystallography (after J.D. Dana), 21st edn. revised, (Wiley, New York, 1999), ISBN: 0-471-31266-5

    Google Scholar 

  16. “IRE Standards on piezoelectric crystals, 1949,” Proc. IRE, vol. 37, no. 12, pp. 1378–1395, December 1949. (IEEE Standard no. 176)

    Google Scholar 

  17. “IRE standards on piezoelectric crystals: determination of the elastic, piezoelectric, and dielectric constants — the electromechanical coupling factor, 1958,” Proc. IRE, vol. 46, no. 4, pp. 764–778, April 1958. (IEEE Standard no. 178)

    Google Scholar 

  18. “IRE standards on piezoelectric crystals — the piezoelectric vibrator: definitions and methods of measurements, 1957,” Proc. IRE, vol. 45, no. 3, pp. 353–358, March 1957

    Google Scholar 

  19. “Standard definitions and methods of measurement for piezoelectric vibrators,” IEEE Standard no. 177, (IEEE, New York, May 1966)

    Google Scholar 

  20. “IEEE Standard on piezoelectricity,” IEEE Standard 176–1978, IEEE, New York. Reprinted in IEEE Trans. Sonics Ultrason., vol. SU-31, no. 2, Part 2, 55 pp., March 1984

    Google Scholar 

  21. “IEEE Standard on piezoelectricity,” IEEE Standard 176–1987, IEEE, New York

    Google Scholar 

  22. T.R. Meeker, in Proc. 33rd Annual Frequency Control Symp., pp. 176–180, (Atlantic City, NJ, May–June 1979)

    Google Scholar 

  23. L. Pauling, The Nature of the Chemical Bond, 3rd edn. (Cornell University Press, Ithaca, 1960). ISBN: 0-8014-0333-2

    Google Scholar 

  24. J.C. Brice, Revs. Mod. Phys. 57(1), 105–146 (January 1985)

    Article  ADS  Google Scholar 

  25. W. Voigt, Lehrbuch der Kristallphysik (B.G. Teubner, Leipzig, 1928)

    MATH  Google Scholar 

  26. G. Heckmann, Ergeb. exakt. Naturwiss. 4, 100–153 (1925)

    Article  Google Scholar 

  27. J.F. Nye, Physical Properties of Crystals (Oxford University Press, Oxford, 1985). ISBN: 0-19-851165-5

    Google Scholar 

  28. A. Ballato, IEEE Trans. Ultrason., Ferroelec, Freq. Contr., 42(5), 916–926 (September 1995)

    Article  Google Scholar 

  29. A.W. Lawson, Phys. Rev. 59, 838–839 (1941)

    Article  ADS  Google Scholar 

  30. R. Bechmann, Phys. Rev. 110(5), 1060–1061 (June 1, 1958)

    Article  ADS  Google Scholar 

  31. W.P. Mason, Bell Syst. Tech. J. 30, 366–380 (April 1951)

    Google Scholar 

  32. B.J. James, “Determination of the Elastic and Dielectric Properties of Quartz,” PhD Dissertation, Royal Holloway and Bedford New College, University of London, Spring 1987, 231 pp. See also B. J. James, “A new measurement of the basic elastic and dielectric constants of quartz,” IEEE Intl. Frequency Control Symp. Proc. (42nd Ann.), pp. 146–154, Baltimore, MD, June 1988

    Google Scholar 

  33. J. Kushibiki, I. Takanaga, S. Nishiyama, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 49(1), 125–135 (January 2002)

    Article  Google Scholar 

  34. J.V. Atanasoff, P. J. Hart, Phys. Rev. 59(1), 85–96 (1941)

    Article  ADS  Google Scholar 

  35. W.P. Mason, Phys. Rev. 55, 775–789 (April 1939)

    Article  ADS  Google Scholar 

  36. R. Bechmann, Proc. Phys. Soc. (London), B64, 323–337 (April 1951)

    ADS  Google Scholar 

  37. R. Bechmann, Archiv der Elektrischen Übertragung 5, 89–90 (1951). (present name: Archiv für Elektronik und Übertragungstechnik)

    Google Scholar 

  38. I. Koga, M. Aruga, Y. Yoshinaka, Phys. Rev. 109, 1467–1473 (March 1958)

    Article  MATH  ADS  Google Scholar 

  39. R. Bechmann, A. Ballato, T. J. Lukaszek, Proc. IRE 50(8), 1812–1822 (August 1962); Proc. IRE 50(12), 2451 (December 1962)

    Article  Google Scholar 

  40. P.C.Y. Lee, Y.-K. Yong, J. Appl. Phys. 60(7), 2327–2342 (1986)

    Article  ADS  Google Scholar 

  41. J. Zelenka, P.C.Y. Lee, IEEE Trans. Sonics Ultrason. SU-18(2), 79–80 (1971)

    Google Scholar 

  42. R.K. Cook, P.G. Weissler, Phys. Rev. 80(4), 712–716 (15 November 1950)

    Article  ADS  Google Scholar 

  43. A. Ballato, M. Mizan, IEEE Trans. Sonics Ultrason. SU-31(1), 11–17 (January 1984)

    Google Scholar 

  44. J.A. Kosinski, J.G. Gualtieri, A. Ballato, IEEE Trans. Ultrason., Ferroelec., Freq. Control 39(4), 502–507 (July 1992)

    Article  Google Scholar 

  45. R. Bechmann, in Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics, ed. by K.-H. Hellwege, A.M. Hellwege (Springer Verlag, Berlin, New York, vol. III/1, pp. 40–123, 1966; and vol. III/2, pp. 40–101, 1969)

    Google Scholar 

  46. J. Lamb, J. Richter, Proc. Roy. Soc. (London) A293, 479–492 (1966)

    ADS  Google Scholar 

  47. W.R. Cook, Jr., H. Jaffe, in Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics, vol. III/11, ed. by K.-H. Hellwege, A.M. Hellwege (Springer Verlag, Berlin, New York, 1979) pp. 287–470

    Google Scholar 

  48. B. Parzen, Design of Crystal and Other Harmonic Oscillators (Wiley, New York, 1983). ISBN: 0-471-08819-6

    Google Scholar 

  49. R.A. Sykes, in Quartz Crystals for Electrical Circuits: Their Design and Manufacture, ed. by R.A. Heising (D. Van Nostrand, New York, 1946) Chap. 6, pp. 205–248

    Google Scholar 

  50. E.W. Kammer, T.E. Pardue, H.F. Frissel, J. Appl. Phys. 19(3), 265–270 (March 1948)

    Article  ADS  Google Scholar 

  51. B.K. Sinha, Ferroelectrics 41(1), 61–73 (1982)

    Google Scholar 

  52. B.K. Sinha, Proc. 35th Annu. Freq. Control Symp. 213–221 (May 1981)

    Google Scholar 

  53. M. Valdois, B.K. Sinha, J.-J. Boy, IEEE Trans. Ultrason., Ferroelec., Frequency Contr. 36(6), 643–651 (November 1989)

    Article  Google Scholar 

  54. B.K. Sinha, IEEE Ultrason. Symp. Proc. 557–563 (December 1990)

    Google Scholar 

  55. B.K. Sinha, IEEE Trans. Sonics Ultrason. SU-32(4), 583–591 (July 1985)

    ADS  Google Scholar 

  56. B.K. Sinha, IEEE Trans. Ultrason., Ferroelec., Frequency Contr. 34(1), 64–74 (January 1987)

    Article  Google Scholar 

  57. S. Locke, B. K. Sinha, IEEE Trans. Ultrason., Ferroelec., Frequency Contr. UFFC-34(4), 478–484 (July 1987)

    Article  Google Scholar 

  58. R.N. Thurston, H.J. McSkimin, P. Andreatch, Jr., J. Appl. Phys. 37(1), 267–275 (January 1966)

    Article  ADS  Google Scholar 

  59. R. Stern, R.T. Smith, J. Acoust. Soc. Am. 44, 640–641 (1968)

    Article  ADS  Google Scholar 

  60. R.F.S. Hearmon, in Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics, vol. III/11, ed. by K.-H. Hellwege, A.M. Hellwege (Springer Verlag, Berlin, New York, 1979) pp. 245–286

    Google Scholar 

  61. W.R Mason, J. Acoust. Soc. Am. 70(6), 1561–1566 (December 1981)

    Article  ADS  Google Scholar 

  62. P. Curie et, J. Curie, Bull. Soc. Fr. Mineral. Cristallogr. 3, 90–93 (1880); C. R. Acad. Sci. (Paris) 91, 294, 383 (March 1880)

    Google Scholar 

  63. M. Trainer, Eur. J. Phys. 24(5), 535–542 (September 2005)

    Article  MathSciNet  Google Scholar 

  64. R. Bechmann, et al., in Piezoelectricity (Her Majesty’s Stationery Office, London, 1957), 369 pp

    Google Scholar 

  65. D. Berlincourt, J. Acoust. Soc. Am. 70(6), 1586–1595 (December 1981)

    Article  ADS  Google Scholar 

  66. T. Yamada, N. Niizeki, H. Toyoda, Japan. J. Appl. Phys. 6(2), 151–155 (1967)

    Article  ADS  Google Scholar 

  67. A.W. Warner, M. Onoe, G.A. Coquin, J. Acoust. Soc. Am. 42(6), 1223–1231 (December 1967)

    Article  ADS  Google Scholar 

  68. R.T. Smith, F. S. Welsh, J. Appl. Phys. 42(6), 2219–2230 (May 1971)

    Article  ADS  Google Scholar 

  69. G.M. Sessler, J. Acoust. Soc. Am. 70(6), 1596–1608 (December 1981)

    Article  ADS  Google Scholar 

  70. R.C. Smythe, IEEE Intl. Frequency Control Symp. Proc. 761–765 (May 1998)

    Google Scholar 

  71. D.C. Malocha, M.P. da Cunha, E. Adler, R.C. Smythe, S. Frederick, M. Chou, R. Helmbold, Y.S. Zhou, 2000 IEEE/EIA Intl. Freq. Control Symp. Proc., pp. 201–205, Kansas City, MO, June 2000

    Google Scholar 

  72. B.H.T. Chai, A.N.P. Bustamante, M. C. Chou, “A new class of ordered langasite structure compounds,” 2000 IEEE/EIA Intl. Freq. Control Symp. Proc., pp. 163–168, Kansas City, MO, June 2000

    Google Scholar 

  73. P.W. Krempl, J. Phys. IV France 126, 95–100 (June 2005)

    Article  Google Scholar 

  74. F. Iwasaki, H. Iwasaki, J. Crystal Growth, 237–239, 820–827 (2002)

    Article  Google Scholar 

  75. W. Shockley, D.R. Curran, D.J. Koneval, Proc. 17th Ann. Frequency Control Symp. 88–126 (May 1963)

    Google Scholar 

  76. D.R. Curran, D.J. Koneval, Proc. 18th Ann. Freq. Control Symp. 93–119 (May 1964)

    Google Scholar 

  77. W.S. Mortley, Wireless World 57, 399–403 (October 1951)

    Google Scholar 

  78. W.S. Mortley, Proc. IEE (London) 104B, 239–249 (December 1956)

    Google Scholar 

  79. R.D. Mindlin, J. Acoust. Soc. Am. 43(6), 1329–1331 (June 1968)

    Article  ADS  Google Scholar 

  80. H.F. Tiersten, R.C. Smythe, J. Acoust. Soc. Am. 65(6), 1455–1460 (June 1979)

    Article  MATH  ADS  Google Scholar 

  81. J.R. Vig, J.W. Le Bus, IEEE Trans. Parts, Hybrids, Packaging PHP-12(4), 365–370 (December 1976)

    Article  Google Scholar 

  82. J.R. Vig, J.W. LeBus, R.L. Filler, Proc. 31st Ann. Freq. Control Symp. 131–143 (June 1977)

    Google Scholar 

  83. R.M. White, F.W. Voltmer, Appl. Phys. Lett. 7(12), 314–316 (1965)

    Article  ADS  Google Scholar 

  84. M.B. Schulz, B.J. Matsinger, M.G. Holland, J. Appl. Phys. 41(7), 2755–2765 (1970)

    Article  ADS  Google Scholar 

  85. R.M. White, Proc. IEEE 58(8), 1238–1276 (August 1970)

    Article  Google Scholar 

  86. M.G. Holland, L.T. Claiborne, Proc. IEEE 62(5), 582–611 (May 1974)

    Article  Google Scholar 

  87. B.K. Sinha, H.F. Tiersten, Appl. Phys. Lett. 34(12), 817–819 (15 June 1979)

    Article  ADS  Google Scholar 

  88. N.F. Foster, J. Acoust. Soc. Am. 70(6), 1609–1614 (December 1981)

    Article  ADS  Google Scholar 

  89. W.E. Newell, Proc. IEEE 52(12), 1603–1607 (December 1964)

    Article  Google Scholar 

  90. W.E. Newell, Proc. IEEE 53(6), 575–581 (June 1965)

    Article  Google Scholar 

  91. W.E. Newell, Proc. IEEE 53(10), 1305–1308 (October 1965)

    Article  Google Scholar 

  92. A. Ballato, T. Lukaszek, Proc. IEEE 51(10), 1495–1496 (October 1973)

    Article  Google Scholar 

  93. A. Ballato, H.L. Bertoni, T. Tamir, IEEE Trans. Microwave Theory Tech. MTT-22(1), 14–25 (January 1974)

    Article  ADS  Google Scholar 

  94. K.M. Lakin, G.R. Kline, R.S. Ketcham, J.T. Martin, K.T. McCarron, IEEE Intl. Freq. Control Symp. Proc. 536–543 (May–June 1989)

    Google Scholar 

  95. K.M. Lakin, IEEE Intl. Freq. Control Symp. Proc. 201–206 (May 1991)

    Google Scholar 

  96. K.M. Lakin, G.R. Kline, K.T. McCarron, IEEE MTT-S Intl. Microwave Symp. Digest 3, 1517–1520 (June 1993)

    Article  Google Scholar 

  97. K.M. Lakin, IEEE Microwave Magazine 4(4), 61–67 (December 2003)

    Article  MathSciNet  Google Scholar 

  98. A. Ballato, J.G. Gualtieri, IEEE Trans. Ultrason., Ferroelect., Freq. Cont. 41(6), 834–844 (November 1994)

    Article  Google Scholar 

  99. H. Iwata, IEICE Electronics Express 1(12), 346–351 (September 2004)

    Article  Google Scholar 

  100. K.L. Ekinci, M.L. Roukes, Rev. Sci. Instrum. 76 art. 061101, 12pp. (2005)

    Google Scholar 

  101. MEMS: A Practical Guide to Design, Analysis, and Applications, ed. by J.G. Korvink, O. Paul (Springer-Verlag, Heidelberg 2006), ISBN: 3-540-21117-9

    Google Scholar 

  102. N. Takahashi, T. Nakumura, S. Nonaka, H. Yagi, Y. Sinriki, K. Tamanuki, Electrochemical and Solid State Lett. 6(5), C77–C78 (2003)

    Article  Google Scholar 

  103. N. Takahashi, T. Nakumura, Electrochemical and Solid State Lett. 6(11), H25–H26 (2003)

    Article  Google Scholar 

  104. A. Ballato, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 48(5), 1189–1240 (September 2001)

    Article  Google Scholar 

  105. R. A. Heising (ed.), Quartz Crystals for Electrical Circuits: Their Design and Manufacture (D. Van Nostrand, New York, 1946)

    Google Scholar 

  106. W.P. Mason, Piezoelectric Crystals and their Application to Ultrasonics (Van Nostrand, New York, 1950)

    Google Scholar 

  107. A. Ballato, Proc. IEEE 58(1), 149–151 (January 1970)

    Article  Google Scholar 

  108. B.A. Auld, Acoustic Fields and Waves in Solids, Vol. I and II, (Robert E. Krieger Publishing, Malabar, FL, 1990). ISBNs: 0-89874-783-X; 0-89874-782-1

    Google Scholar 

  109. W.P. Mason, Proc. IEEE 57(10), 1723–1734 (October 1969)

    Article  Google Scholar 

  110. R.D. Mindlin, J. Appl. Phys., 23(1), 83–88 (January 1952)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  111. R.D. Mindlin, D.C. Gazis, Proc. Fourth U. S. Natl. Congr. Appl. Math. 305–310 (1962)

    Google Scholar 

  112. R.D. Mindlin, P.C.Y. Lee, Intl. J. Solids and Struct. 2(1), 125–139 (January 1966)

    Article  Google Scholar 

  113. R.D. Mindlin, W.J. Spencer, J. Acoust. Soc. Am. 42(6), 1268–1277 (December 1967)

    Article  MATH  ADS  Google Scholar 

  114. B.K. Sinha, IEEE Trans. Ultrason., Ferroelec., Frequency Contr. 48(5), 1162–1180 (September 2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ballato, A. (2008). Basic Material Quartz and Related Innovations. In: Piezoelectricity. Springer Series in Materials Science, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68683-5_2

Download citation

Publish with us

Policies and ethics