Skip to main content
Log in

Characterizing Trophic State in Tropical/Subtropical Reservoirs: Deviations among Indexes in the Lower Latitudes

  • Published:
Environmental Management Aims and scope Submit manuscript

A Correction to this article was published on 09 October 2021

This article has been updated

Abstract

Trophic state indexes (TSI) guide management strategies regarding eutrophication control worldwide. Such indexes usually consider chlorophyll-a (Chl-a), total phosphorus (TP), and Secchi disk depth (SDD) as independent variables for estimating aquatic productivity and the degree of impairment. TSIs for each of these components are frequently averaged to produce a single TSI value associated with a trophic state classification (e.g., oligotrophic, mesotrophic, or eutrophic). The potential divergence among equations and classification systems originally developed for temperate lakes or tropical/subtropical reservoirs might be particularly relevant in the tropics, where there is a lack of data and the use of equations originally developed for temperate systems may be inappropriate. We calculated two widely used TSIs for temperate lakes (TSItemp) or tropical reservoirs (TSItrop) and explored the deviations among TSI components in Brazilian reservoirs. When applied to our tropical/subtropical reservoirs, the TSItemp provided a conservative approach, with lower limits anticipating increasing trophic state classification. TSI components for Chl-a and SDD significantly deviated for both sets of equations, and these discrepancies were related to turbidity, water temperature, and cyanobacterial biomass. For TSItemp, but not for TSItrop, TSI values in relation to Chl-a and TP were also significantly different. All such deviations have important management implications especially when Chl-a, TP, and SDD are averaged in a single TSI, representing loss of information and less useful trophic state classifications. Our results demonstrate that tropical water bodies may respond to drivers of eutrophication differently than temperate systems, highlighting the need for more data to better inform management of these understudied ecosystems. As managers collect data from more tropical water bodies, regional models may offer even better understanding of factors influencing trophic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The full dataset used in this paper is electronically available as Online Supplementary Material.

Change history

References

  • Abell JM, Özkundakci D, Hamilton DP, Jones JR (2012) Latitudinal variation in nutrient stoichiometry and chlorophyll-nutrient relationships in lakes: a global study. Fundam Appl Limnol 181:1–14

    Article  CAS  Google Scholar 

  • Aizaki M (1985) Total number of bacteria as a Trophic State Index. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 22:2732–2738

    CAS  Google Scholar 

  • Almanza V, Pedreros P, Laughinghouse IV HD, Félez J, Parra O, Azócar M, Urrutia R (2019) Association between trophic state, watershed use, and blooms of cyanobacteria in south-central Chile. Limnologica 75:30–41

    Article  CAS  Google Scholar 

  • APHA, AWWA, WEF (2012) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Barros MUG, Wilson AE, Leitão JIR, Pereira SP, Buley RP, Fernandez-Figueroa EG, Capelo-Neto J (2019) Environmental factors associated with toxic cyanobacterial blooms across 20 drinking water reservoirs in a semi-arid region of Brazil. Harmful Algae 86:128–137

    Article  CAS  Google Scholar 

  • Birk S et al. (2020) Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat Ecol Evol 4:1060–1068

    Article  Google Scholar 

  • Braga GG, Becker V, Oliveira JNP, Mendonça Jr JR, Bezerra AFM, Torres LM, Galvão AMF, Mattos A (2015) Influence of extended drought on water quality in tropical reservoirs in a semiarid region. Acta Limnol Bras 27:15–23

    Article  Google Scholar 

  • Brasil (2005) Resolution 357, March 17th, 2005. Brazilian Council for the Environment (CONAMA). www.mma.gov.br/port/conama/res/res05/res35705.pdf. Accessed Dec 2020

  • Brezonik PL, Bouchard Jr RW, Finlay JC, Griffin CG, Olmanson LG, Anderson JP, Arnold WA, Hozalski R (2019) Color, chlorophyll a, and suspended solids effects on Secchi depth in lakes: implications for trophic state assessment. Ecol Appl 29:e01871

    Article  Google Scholar 

  • Canfield Jr DE, Langeland KA, Maceina ML, Haller WT, Shireman JV (1983) Trophic state classification of lakes with aquatic macrophytes. Can J Fish Aquat Sci 40:1713–1718

    Article  Google Scholar 

  • Carlson RE (1977) A Trophic State Index for lakes. Limnol Oceanogr 22:361–369

    Article  CAS  Google Scholar 

  • Carlson RE (1983) Discussion on “Using differences among Carlson’s Trophic State Index values in regional water quality assessment” by Richard A. Osgood. Water Resour Bull 19:307–309

    Article  Google Scholar 

  • Carlson RE, Havens KE (2009) Simple graphical methods for the interpretation of relationships between trophic state variables. Lake Reserv Manag 21:107–118

    Article  Google Scholar 

  • Carlson RE, Simpson J (1996) A coordinator’s guide to volunteer lake monitoring methods. North American Lake Management Society, p 96

  • Castro PMG, Maruyama LS, Campos EC, Paiva P, Spigolon JR, Menezes LCB (2008) Mapeamento da pesca artesanal ao longo do médio e baixo rio Tietê (São Paulo, Brasil). Série de Relatórios Técnicos do Instituto de Pesca 33:1–34

    Google Scholar 

  • Cigagna C, Bonotto DM, Camargo AFM, Sturaro JR (2016) Trophic State Index (TSI) and physico-chemical characteristics of a shallow reservoir in southeast Brazil. Environ Earth Sci 75:102

    Article  CAS  Google Scholar 

  • Clark CM, Bell MD, Boyd JW, Compton JE, Davidson EA, Davis C, Fenn ME, Geiser L, Jones L, Blett TF (2017) Nitrogen‐induced terrestrial eutrophication: cascading effects and impacts on ecosystem services. Ecosphere 8:e01877

    Article  Google Scholar 

  • Coelho C, Heim B, Foerster S, Brosinsky A, Araújo JC (2017) In situ and satellite observation of CDOM and chlorophyll-a dynamics in small water surface reservoirs in the Brazilian semiarid region. Water 9:913

    Article  CAS  Google Scholar 

  • Cunha DGF, Benassi SF, Falco PB, Calijuri MC (2016) Trophic state evolution and nutrient trapping capacity in a transboundary subtropical reservoir: a 25-year study. Environ Manag 57:649–659

    Article  Google Scholar 

  • Cunha DGF, Calijuri MC (2011) Seasonal variation of phytoplankton functional groups in the arms of a tropical reservoir with multiple uses (SP, Brazil). Acta Bot. Bras. 25:822–831

    Article  Google Scholar 

  • Cunha DGF, Calijuri MC, Lamparelli MC (2013) A Trophic State Index for tropical/subtropical reservoirs (TSItsr). Ecol Eng 60:126–134

    Article  Google Scholar 

  • Cunha DGF, Grull D, Damato M, Blum JRC, Lutti JEI, Eiger S, Mancuso PCS (2011) Trophic state evolution in a subtropical reservoir over 34 years in response to different management procedures. Water Sci Technol 64:2338–2344

    Article  CAS  Google Scholar 

  • Cunha DGF, Lima VFM, Néri AM, Marafão GA, Miwa ACP, Calijuri MC, Bendassoli JA, Tromboni F, Maranger R (2017a) Uptake rates of ammonium and nitrate by phytoplankton communities in two eutrophic tropical reservoirs. Int Rev Hydrobiol 102:125–134

    Article  CAS  Google Scholar 

  • Cunha DGF, Ogura AP, Calijuri MC (2017b) Nutrient reference concentrations and trophic state boundaries in subtropical reservoirs. Water Sci Technol 65:1461–1467

    Article  Google Scholar 

  • Dantas DDF, Rubim PL, Oliveira FA, Costa MRA, Moura CGB, Teixeira LH, Attayde JL (2019) Effects of benthivorous and planktivorous fish on phosphorus cycling, phytoplankton biomass and water transparency of a tropical shallow lake. Hydrobiologia 829:31–41

    Article  CAS  Google Scholar 

  • Díaz-Torres O, Anda J, Lugo-Melchor OY, Pacheco A, Orozco-Nunnelly DA, Shear H, Senés-Guerrero C, Gradilla-Hernández MS (2021) Rapid changes in the phytoplankton community of a subtropical, shallow, hypereutrophic lake during the rainy season. Front Microbiol 12:617151

    Article  Google Scholar 

  • Dodds WK, Cole JJ (2007) Expanding the concept of trophic state in aquatic ecosystems: it’s not just the autotrophs. Aquatic Sci 69:427–439

    Article  CAS  Google Scholar 

  • Dodds WK (2008) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19

    Article  CAS  Google Scholar 

  • Dunalska JA (2011) Total organic carbon as a new index for monitoring trophic states in lakes. Int J Oceanogr Hydrobiol 40:112–115

    Article  CAS  Google Scholar 

  • Ejsmont-Karabin J (2012) The usefulness of zooplankton as lake ecosystem indicators: rotifer Trophic State Index. Pol J Ecol 60:339–350

    Google Scholar 

  • Ejsmont-Karabin J, Karabin A (2013) The suitability of zooplankton as lake ecosystem indicators: crustacean Trophic State Index. Pol J Ecol 61:561–573

    Google Scholar 

  • Elliott JA (2012) Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria. Water Res 46:1364–1371

    Article  CAS  Google Scholar 

  • Esfandi F, Mahvi AH, Mosaferi M, Armanfar F, Hejazi MA, Maleki S (2018) Assessment of temporal and spatial eutrophication index in a water dam reservoir. Global J Environ Sci Manag 4:153–166

    CAS  Google Scholar 

  • Feresin EG, Arcifa MS, Silva LHS, Esguícero ALH (2010) Primary productivity of the phytoplankton in a tropical Brazilian shallow lake: experiments in the lake and in mesocosms. Acta Lim Bras 22:384–396

    Article  Google Scholar 

  • Fetahi T (2019) Eutrophication of Ethiopian water bodies: a serious threat to water quality, biodiversity and public health. Afr J Aquat Sci 44:303–312

    Article  CAS  Google Scholar 

  • Filstrup CT, Downing JA (2017) Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. Inland Waters 7:385–400

    Article  CAS  Google Scholar 

  • Fischer P, Pöthig R, Gücker B, Venohr M (2018) Phosphorus saturation and superficial fertilizer application as key parameters to assess the risk of diffuse phosphorus losses from agricultural soils in Brazil. Sci Tot Environ 630:1515–1527

    Article  CAS  Google Scholar 

  • Fracácio R, Espíndola ELG, Rodgher S, Pereira RHG, Rocha O, Verani NF (2002) Limnologia dos reservatórios em cascata do Médio e Baixo Rio Tietê: uma análise espacial e temporal. In: Recursos hidroenergéticos: usos, impactos e planejamento integrado. Rima, São Carlos, p 145–161

  • Gaiser EE, Deyrup ND, Bachmann RW, Battoe LE, Swain HM (2009) Effects of climate variability on transparency and thermal structure in subtropical, monomictic Lake Annie, Florida. Fundam Appl Limnol 175:217–230

    Article  Google Scholar 

  • García-Chicote J, Armengol X, Rojo C (2018) Zooplankton abundance: a neglected key element in the evaluation of reservoir water quality. Limnologica 69:46–54

    Article  CAS  Google Scholar 

  • Gołdyn R, Joniak T, Kowalczewska-Madura K, Kozak A (2003) Trophic state of a lowland reservoir during 10 years after restoration. Hydrobiologia 506:759–765

    Article  Google Scholar 

  • Gupta M (2014) A new Trophic State Index for lagoons. J Ecosyst 2014:152473

    Article  Google Scholar 

  • Havens KE, Nürnberg GK (2009) The phosphorus-chlorophyll relationship in lakes: potential influences of color and mixing regime. Lake Reserv Manag 20:188–196

    Article  Google Scholar 

  • Hayes NM, Deemer BR, Corman JR, Razavi NR, Strock KE (2017) Key differences between lakes and reservoirs modify climate signals: a case for a new conceptual model. Limnol Oceanogr Lett 2:47–62

    Article  Google Scholar 

  • Huber V, Adrian R, Gerten D (2008) Phytoplankton response to climate warming modified by trophic state. Limnol Oceanogr 53:1–13

    Article  Google Scholar 

  • Huszar VLM, Caraco NF, Roland F, Cole J (2006) Nutrient-chlorophyll relationships in tropical-subtropical lakes: do temperate models fit? Biogeochemistry 79:239–250

    Article  CAS  Google Scholar 

  • IBGE—Instituto Brasileiro de Geografia e Estatística (2020) Pesquisa Nacional de Saneamento Básico 2017. Abastecimento de Água e Esgotamento Sanitário. https://biblioteca.ibge.gov.br/visualizacao/livros/liv101734.pdf. Accessed Oct 2020

  • Jones C, Bachmann RW (1976) Prediction of phosphorus and chlorophyll levels in lakes. J Water Pollut Control Fed 48:2176–2182

    CAS  Google Scholar 

  • Kâ S, Mendoza-Vera JM, Bouvy M, Champalbert G, N’Gom-Kâ R, Pagano M (2012) Can tropical freshwater zooplankton graze efficiently on cyanobacteria? Hydrobiologia 679:119–138

    Article  CAS  Google Scholar 

  • Kimmel BL, Groeger AW (1984) Factors controlling primary production in lakes and reservoirs: a perspective. Lake Reserv Manag 1:277–281

    Article  Google Scholar 

  • Klippel G, Macêdo RL, Branco CWC (2020) Comparison of different trophic state indices applied to tropical reservoirs. Lakes Reserv 25:214–229

    Article  CAS  Google Scholar 

  • Kosten S, Lacerot G, Jeppesen E, Marques DM, Van Nes EH, Mazzeo N, Scheffer M (2009) Effects of submerged vegetation on water clarity across climates. Ecosystems 12:1117–1129

    Article  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15:259–263

    Article  Google Scholar 

  • Kratzer CR, Brezonik PL (1981) A Carlson-type Trophic State Index for nitrogen in Florida lakes. Water Res Bull 17:713–715

    Article  CAS  Google Scholar 

  • Kutner M, Nachtsheim C, Neter J (2004) Applied linear statistical models, 4th edn. McGraw-Hill, Irwin

    Google Scholar 

  • Lamparelli MC (2004) Grau de trofia em corpos d’água do estado de São Paulo: avaliação dos métodos de monitoramento. Tese (Doutorado)—Universidade de São Paulo, São Paulo

    Google Scholar 

  • Lazzaro X (1997) Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs? Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen 26:719–730

    Google Scholar 

  • Lazzaro X, Bouvy M, Ribeiro RA, Oliviera VS, Sales LT, Vasconcelos ARM, Mata MR (2003) Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshwater Biol 48:649–668

    Article  Google Scholar 

  • Leme E, Silva EP, Rodrigues PS, Silva IR, Martins MFM, Bondan EF, Bernardi MM, Kirsten TB (2018) Billings reservoir water used for human consumption presents microbiological contaminants and induces both behavior impairments and astrogliosis in zebrafish. Ecotox Environ Safe 161:364–373

    Article  CAS  Google Scholar 

  • Lewis Jr. WM (1996) Tropical lakes: how latitude makes a difference. In: Schiemer F, Boland KT (eds), Perspectives in tropical limnology, SPB Academic Publishing, Amsterdam, pp. 43–64

  • Lewis Jr WM (2000) Basis for the protection and management of tropical lakes. Lakes Reserv: Res Manag 5:35–48

    Article  Google Scholar 

  • Liu WW, Zhao E, Kuo YM, Jang CS (2017) Identifying the relationships between trophic states and their driving factors in the Shihmen Reservoir, Taiwan. Limnologica 64:38–45

    Article  CAS  Google Scholar 

  • Lopes OF, Rocha FA, Sousa LF, Silva DML, Amorim AF, Gomes RL, Silva Junior ALS, Jesus RM (2019) Influence of land use on Trophic State Indexes in northeast Brazilian river basins. Environ Monit Assess 191:77

    Article  CAS  Google Scholar 

  • Ma J, Brookes JD, Qin B, Paerl HW, Gao G, Wu P, Zhang W, Deng J, Zhu G, Zhang Y, Xu H, Niu H (2014) Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae 31:136–142

    Article  CAS  Google Scholar 

  • Maberly SC, Pitt JA, Davies PS, Carvalho L (2020) Nitrogen and phosphorus limitation and the management of small productive lakes. Inland Waters 10:159–172

    Article  Google Scholar 

  • Markad AT, Landge AT, Nayak BB, Inamdar AB, Mishra AK (2019) Trophic state modeling for shallow freshwater reservoir: a new approach. Environ Monit Assess 191:586

    Article  Google Scholar 

  • Martins S, Chokmani K, Alcântara E, Ogashawara I, El-Alem A (2018) Mapping the coloured dissolved organic matter absorption coefficient in a eutrophic reservoir using remotely sensed images. Inland Waters 8:488–504

    Article  CAS  Google Scholar 

  • Mazumder A (1994) Phosphorus-chlorophyll relationships under contrasting herbivory and thermal stratification: predictions and patterns. Can J Fish Aquat Sci 51:390–400

    Article  CAS  Google Scholar 

  • Meerhoff M, Iglesias C, De Mello FT, Clemente JM, Jensen E, Lauridsen TL, Jeppesen E (2007) Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshw Biol 52:1009–1021

    Article  Google Scholar 

  • Moss B, Stephen D, Alvarez C, Becares E, Van de Bund W, Collings SE, Van Donk E, De Eyto E, Feldmann T, Fernandez-Alaez C, Fernandez-Alaez M, Franken RJM, Garcia-Criado F, Gross EM, Gyllström Mikael, Hansson Lars-Anders, Irvine K, Järvalt A, Jensen JP, Jeppesen E, Kairesalo T, Kornijow R, Krause T, Kunnap H, Laas A, Lille E, Lorens B, Luup H, Miracle MR, Noges P, Noges T, Nykänen M, Ott I, Peczula W, Peeters ETHM, Phillips G, Romo S, Russell V, Salujoe J, Scheffer M, Siewertsen K, Smal H, Tesch C, Timm H, Tuvikene L, Tonno I, Virro T, Vicente E, Wilson D (2003) The determination of ecological status in shallow lakes—a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquat Conserv: Marine Freshw Ecosyst 13:507–549

    Article  Google Scholar 

  • Moustaka-Gouni M, Sommer U (2020) Effects of harmful blooms of large-sized and colonial cyanobacteria on aquatic food webs. Water 12:1587

    Article  Google Scholar 

  • Naumann E (1929) The scope and chief problems of regional limnology. Int Revue Ges Hydrobiol 21:423

    Article  Google Scholar 

  • Naumoski A, Mitreski K (2010) Classifying diatoms into Trophic State Index classes with novel classification algorithm. Procedia Environ Sci 2:1124–1138

    Article  Google Scholar 

  • Nürnberg GK (2002) Quantification of oxygen depletion in lakes and reservoirs with the hypoxic factor. Lake Res Manag 18:298–305

    Google Scholar 

  • Nürnberg GK (2007) Lake responses to long-term hypolimnetic withdrawal treatments. Lake Res Manag 23:388–409

    Article  Google Scholar 

  • OECD (1982) Eutrophication of waters, monitoring, assessment and control. Paris, France. OECD

  • Ortega DJP (2017) Identificação e avaliação da pressão antrópica no reservatório Engenheiro Paulo de Paiva Castro: repercussão sobre as águas superficiais da bacia do rio Juqueri no município de Mairiporã. UNESP, Tese (Doutorado), p 246

    Google Scholar 

  • Osgood R (1983) Using differences among Carlson’s Trophic State Index values in regional water quality assessment. Wat Res Bull 18:67–74

    Article  Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    Article  CAS  Google Scholar 

  • Pamplona-Silva MT, Gonçalves LC, Marin-Morales MA (2018) Genetic toxicity of water contaminated by microcystins collected during a cyanobacteria bloom. Ecotoxicol Environ Saf 166:223–230

    Article  CAS  Google Scholar 

  • Pena LSF, Calijuri MC, Cunha DGF (2013) Total volatile solids may aid in trophic state assessment in subtropical reservoirs. Water Supply 13:808–815

    Article  Google Scholar 

  • Phillips G, Pietiläinen OP, Carvalho L, Solimini A, Solheim AL, Cardoso AC (2008) Chlorophyll-nutrient relationships of different lake types using a large European dataset. Aquat Ecol 42:213–226

    Article  CAS  Google Scholar 

  • Pomari, Kane DD, Nogueira MG (2018) Application of multiple-use indices to assess reservoirs water quality and the use of plankton community data for biomonitoring purposes. Int J Hydrol 2(2):168–179

    Article  Google Scholar 

  • Puga AL (2016) Biomassa em carbono nas comunidades fitoplanctônica e zooplanctônica de sete reservatórios tropicais. Dissertação (Mestrado), UNIRIO. p 83

  • Pujoni DGF, Maia-Barbosa PMM, Barbosa FAR, Fragoso Jr CR, van Nes EH (2016) Effects of food web complexity on top-down control in tropical lakes. Ecol Model 320:358–365

    Article  Google Scholar 

  • Quinlan R, Filazzola A, Mahdiyan O, Shuvo A, Blagrave K, Ewins C, Moslenko L, Gray DK, O’Reilly CM, Sharma S (2020) Relationships of total phosphorus and chlorophyll in lakes worldwide. Limnol Oceanogr. https://doi.org/10.1002/lno.11611

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed Dec 2020

  • Rangel LM, Silva LHS, Rosa P, Roland F, Huszar VLM (2012) Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia 693:13–28

    Article  CAS  Google Scholar 

  • Rigosi A, Carey CC, Ibelings BW, Brookes JD (2014) The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol Oceanogr 59:99–114

    Article  Google Scholar 

  • Riley ET, Prepas EE (1985) Comparison of the phosphorus-chlorophyll relationships in mixed and stratified lakes. Can J Fish Aquat Sci 42:831–835

    Article  CAS  Google Scholar 

  • Rippey SR, Cabelli VJ (1989) Use of the thermotolerant Aeromonas group for the trophic state classification of freshwaters. Water Res 23:1107–1114

    Article  CAS  Google Scholar 

  • Rocha EO, Calijuri ML, Santiago AF, Assis LC, Alves LGS (2012) The contribution of conservation practices in reducing runoff, soil loss, and transport of nutrients at the watershed level. Water Resour Manag 26:3831–3852

    Article  Google Scholar 

  • Rogers TL, Munch SB, Stewart SD, Palkovacs EP, Giron-Nava A, Matsuzaki SS, Symons CS (2020) Trophic control changes with season and nutrient loading in lakes. Ecol Lett 23:1287–1297

    Article  Google Scholar 

  • Saghi H, Karimi L, Javid AH (2015) Investigation on Trophic State Index by artificial neural networks (case study: Dez Dam of Iran). Appl Water Sci 5:127–136

    Article  CAS  Google Scholar 

  • Saluja R, Garg JK (2017) Trophic state assessment of Bhindawas Lake, Haryana, India. Environ Monit Assess 189:32

    Article  CAS  Google Scholar 

  • Santana LM, Crossetti LO, Ferragut C (2017) Ecological status assessment of tropical reservoirs through the assemblage index of phytoplankton functional groups. Braz J Bot 40:695–704

    Article  Google Scholar 

  • Santos MA, Damázio JM, Rogério JP, Amorim MA, Medeiros AM, Abreu JLS, Maceira MEP, Melo AC, Rosa LP (2017) Estimates of GHG emissions by hydroelectric reservoirs: the Brazilian case. Energy 133:99–107

    Article  Google Scholar 

  • São Paulo (2019) Energy balance of the state of São Paulo from year 2018. Secretary of Infrastructure and Environment, Governor of the State. www.dadosenergeticos.energia.sp.gov.br. Accessed Jun 2020

  • Seip KL, Jeppesen E, Jensen JP, Faafeng B (2000) Is trophic state or regional location the strongest determinant for Chl-a/TP relationships in lakes? Aquat Sci 62:195–204

    Article  CAS  Google Scholar 

  • Sheela AM, Letha J, Joseph S (2011) Environmental status of a tropical lake system. Environ Monit Assess 180:427–449

    Article  CAS  Google Scholar 

  • Smith VH (1982) The nitrogen and phosphorus dependence of algal biomass in lakes: an empirical and theoretical analysis. Limnol Oceanogr 27:1101–1112

    Article  CAS  Google Scholar 

  • Smith WS, Pereira CGF, Espíndola ELG, Rocha O (2018) Trophic structure of the fish community throughout the reservoirs and tributaries of the Middle and Lower Tietê River (São Paulo, Brazil). Acta Limnol Brasiliensia 30:e308

    Google Scholar 

  • Soria JM, Montagud D, Sòria-Perpinyà X, Sendra MD, Vicente E (2019) Phytoplankton Reservoir Trophic Index (PRTI): a new tool for ecological quality studies. Inland Waters 9:301–308

    Article  Google Scholar 

  • Stamou G, Katsiapi M, Moustaka-Gouni M, Michaloudi E (2019) Trophic state assessment based on zooplankton communities in Mediterranean lakes. Hydrobiologia 844:83–103

    Article  CAS  Google Scholar 

  • Stein RA, DeVries DR, Dettmers JM (1995) Food-web regulation by a planktivore: exploring the generality of the trophic cascade hypothesis. Can J Fish Aquat Sci 52:2518–2526

    Article  Google Scholar 

  • Toledo AP, Talarico M, Chinez SJ, Agudo EG (1983) Aplicação de modelos simplificados para avaliaçao do processo da eutrofizaçao em lagos reservatórios tropicais. Paper presented at 12th Congresso Brasileiro de Engenharia Sanitária e Ambiental, Santa Catarina, Brazil

  • Von Sperling E (2012) Hydropower in Brazil: overview of positive and negative environmental aspects. Energy Proced 18:110–118

    Article  CAS  Google Scholar 

  • Walker Jr WW (1979) Use of hypolimnetic oxygen depletion rate as a Trophic State Index for lakes. Wat Resour Res 15:1463–1470

    Article  CAS  Google Scholar 

  • Walker Jr WW (1984) Trophic state indices in reservoirs. Lake Reserv Manag 1:435–440

    Article  Google Scholar 

  • Wurtsbaugh WA, Paerl HW, Dodds WK (2019) Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdiscip Rev: Water 6:e1373

    Google Scholar 

  • Xiao M, Li M, Reynolds CS (2018) Colony formation in the cyanobacterium Microcystis. Biol. Rev. 93:1399–1420

    Article  Google Scholar 

  • Yang B, Jiang YJ, He W, Liu WX, Kong XZ, Jørgensen SE, Xu FL (2016) The tempo-spatial variations of phytoplankton diversities and their correlation with trophic state levels in a large eutrophic Chinese lake. Ecol Indic 66:153–162

    Article  Google Scholar 

  • Yuan LL, Jones JR (2020) Rethinking phosphorus–chlorophyll relationships in lakes. Limnol Oceanogr 65:1847–1857

    Article  CAS  Google Scholar 

  • Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K (2015) A global boom in hydropower dam construction. Aquat Sci 77:161–170

    Article  Google Scholar 

  • Zou W, Zhu G, Cai Y, Vilmi A, Xu H, Zhu M, Gong Z, Zhang Y, Qin B (2020) Relationships between nutrient, chlorophyll a and Secchi depth in lakes of the Chinese Eastern Plains ecoregion: Implications for eutrophication management. J Environ Manag 260:109923

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for funding DGF Cunha and NR Finkler (Grants #2018/21412-9 and #2018/13171-1). We also thank CETESB (Companhia Ambiental do Estado de São Paulo) for the dataset used in this paper, which is publicly available at the InfoÁguas Sytem: https://cetesb.sp.gov.br/infoaguas. Two anonymous reviewers and the associate editor provided helpful comments to improve the manuscript.

Funding

This study was partially funded by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) under the Grant Agreements #2018/21412-9 and #2018/13171-1.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by DGFC, NRF, MCL, MdCC, WKD, and REC. The first draft of the manuscript was written by DGFC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Davi Gasparini Fernandes Cunha.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, D.G.F., Finkler, N.R., Lamparelli, M.C. et al. Characterizing Trophic State in Tropical/Subtropical Reservoirs: Deviations among Indexes in the Lower Latitudes. Environmental Management 68, 491–504 (2021). https://doi.org/10.1007/s00267-021-01521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-021-01521-7

Keywords

Navigation