Skip to main content

Advertisement

Log in

Ecological Status of a Patagonian Mountain River: Usefulness of Environmental and Biotic Metrics for Rehabilitation Assessment

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

This work evaluates the consequences of anthropogenic pressures at different sections of a Patagonian mountain river using a set of environmental and biological measures. A map of risk of soil erosion at a basin scale was also produced. The study was conducted at 12 sites along the Percy River system, where physicochemical parameters, riparian ecosystem quality, habitat condition, plants, and macroinvertebrates were investigated. While livestock and wood collection, the dominant activities at upper and mean basin sites resulted in an important loss of the forest cover still the riparian ecosystem remains in a relatively good status of conservation, as do the in-stream habitat conditions and physicochemical features. Besides, most indicators based on macroinvertebrates revealed that both upper and middle basin sections supported similar assemblages, richness, density, and most functional feeding group attributes. Instead, the lower urbanized basin showed increases in conductivity and nutrient values, poor quality in the riparian ecosystem, and habitat condition. According to the multivariate analysis, ammonia level, elevation, current velocity, and habitat conditions had explanatory power on benthos assemblages. Discharge, naturalness of the river channel, flood plain morphology, conservation status, and percent of urban areas were important moderators of plant composition. Finally, although the present land use in the basin would not produce a significant risk of soil erosion, unsustainable practices that promotes the substitution of the forest for shrubs would lead to severe consequences. Mitigation efforts should be directed to protect headwater forest, restore altered riparian ecosystem, and to control the incipient eutrophication process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan JD (2004) Landscapes and riverscapes: the influence of land-use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284. doi:10.1146/annurev.ecolsys.35.120202.110122

    Article  Google Scholar 

  • APHA (1994) Standard methods for the examination of water and wastewater. American Public Health Association, Hanover

    Google Scholar 

  • Armitage PD, Moss D, Wright JF, Furse MT (1983) The performance of a new biological water quality score system based on macroinvertebrates over a range of unpolluted running water sites. Water Res 17:333–347. doi:10.1016/0043-1354(83)90188-4

    Article  CAS  Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, Second edn. U.S. Environmental Protection Agency, Washington, DC EPA. 841-b-99-002

    Google Scholar 

  • Bauer G (2010) Calidad del agua en el río Percy inferior en relación con las características naturales y de uso del suelo de la Cuenca de Licenciatura Tesis. Universidad Nacional de la Patagonia Sede Esquel, Esquel, p 58

    Google Scholar 

  • Blackhall M, Veblen TT, Raffaele E (2015) Recent fire and cattle herbivory enhance plant-level fuel flammability in shrublands. J Veg Sci 26:123–133. doi:10.1111/jvs.12216

    Article  Google Scholar 

  • Bonanno G, Lo Giudice R (2010) Application of two quality indices as monitoring and management tools of rivers. Case study: the Imera Meridionale River, Italy. Environ Manag 45(4):856–867. doi:10.1007/s00267-010-9450-1

    Article  Google Scholar 

  • Buck O, Niyogi DK, Townsend CR (2004) Scale-dependence of land use effects on water quality of streams in agricultural catchments. Environ Pollut 130(2):287–299. doi:10.1016/j.envpol.2003.10.018

    Article  CAS  Google Scholar 

  • Buendia C, Gibbins CN, Vericat D, Batalla RJ, Douglas A (2013) Detecting the structural and functional impacts of fine sediment on stream invertebrates. Ecol Indic 25:184–196

    Article  Google Scholar 

  • Carabelli F, Scoz R (2008) Human-induced alterations in native forests of Patagonia, Argentina. In: Lafortezza R et al (eds) Patterns and processes in forest landscapes. Springer, Berlin, pp 89–105. doi:10.1016/j.ecolind.2012.09.027

    Chapter  Google Scholar 

  • Castela J, Ferreira V, Graça M (2008) Evaluation of stream ecological integrity using litter decomposition and benthic invertebrates. Environ Pollut 153:440–449. doi:10.1016/j.envpol.2007.08.005

    Article  CAS  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  CAS  Google Scholar 

  • Consejo Federal de Inversiones (CFI) (2006) Gobierno de la Provincia del Chubut. Determinación de la materia prima disponible para proyectos de inversión forestal en la provincia del Chubut. Informe Final. Consejo Federal de Inversiones. p 117

  • Consejo Federal de Inversiones (CFI) (2007) Plan Estratégico de manejo conjunto de las áreas Este y Norte linderas al Parque Nacional y Reserva Nacional Los Alerces. Chubut, Argentina. Informe Final-fase I. Caracterización y Diagnóstico. Chubut

  • Coronato FR, del Valle HF (1988) Caracterización hídrica de las cuencas hidrográficas de la provincia del Chubut. Cenpat-Conicet. Puerto Madryn. Chubut. Argentina. p 183

  • Correa MN (1978) Flora Patagónica, Tomo VIII, parte III: Gramineae. INTA, Buenos Aires

    Google Scholar 

  • Correa MN (1999) Flora Patagónica, Tomo VIII, parte VI: Dicotiledóneas Gamopétalas (Ericaceae a Calyceraceae). INTA, Buenos Aires

    Google Scholar 

  • Cucchi RL (1980) La Formación Esquel: nueva interpretación estratigráfica. Rev de la Asoc Geol Argent 32(2):167–173

    Google Scholar 

  • Di Prinzio CY, Casaux RJ, Miserendino ML (2009) Effects of land use on fish assemblages in Patagonian low order streams. Ann Limnol Int J Limnol 5(4):267–277. doi:10.1051/limn/2009030

    Article  Google Scholar 

  • Dirección General de Bosques y Parques (DGBP) (2008) Taller para determinar criterios de zonificación de áreas en la provincia de Chubut para la aplicación de la Ley Nacional de Bosques, Chubut

  • Domínguez E, Fernández HR (2009) Macroinvertebrados bentónicos sudamericanos sistemática y biología. Fundación Miguel Lillo, Tucumán

    Google Scholar 

  • EPA (2003) Developing water quality criteria for suspended and bedded sediments (SABS), (August). Science Advisory Board Consultation, p 58

  • FAO (1980) Metodología provisional para la evaluación de la degradación de los suelos. Roma, p 86

  • Feio MJ, Ferreira J, Buffagni A, Erba S, Dörflinger G, Ferréol M, Munné A, Prat N, Tziortzis I, Urbanič G (2014) Comparability of ecological quality boundaries in the Mediterranean basin using freshwater benthic invertebrates. Statistical options and implications. Sci Total Environ 476–477:777–784. doi:10.1016/j.scitotenv.2013.07.085

    Article  Google Scholar 

  • Goldstein RM, Carlisle DM, Meador MR, Short TM (2007) Can basin land use effects on physical characteristics of streams be determined at broad geographic scales? Environ Monit Assess 130(1–3):495–510. doi:10.1007/s10661-006-9439-7

    Article  Google Scholar 

  • Gordon ND, McMahon TA, Finlayson BL (1994) Stream hydrology, an introduction for ecologists. Wiley, New York

    Google Scholar 

  • Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sinauer Associates Inc. Publishers, Sunderland

    Google Scholar 

  • Harding JS, Quinn JM, Hickey CW (2000) Effects of mining and production forestry. In: Collier KJ, Winterbourn MJ (eds) New Zealand stream invertebrates: ecology and implications for management. New Zealand Limnological Society, Christchurch, pp 230–259

  • Hughes SJ, Santos J, Ferreira T, Mendes A (2010) Evaluating the response of biological assemblages as potential indicators for restoration measures in an intermittent Mediterranean river. Environ Manag 46(2):285–301. doi:10.1007/s00267-010-9521-3

    Article  Google Scholar 

  • Irisarri J, Buduba C, Valenzuela F (2000) Transecta Modelo Futaleufú – Esquel: Zonificación de información edáfica, climática y topográfica con relación al sitio forestal, como sustento para la toma de decisiones en la introducción y diversificación de especies arbóreas en la Región Andino Patagónica. Informe Final Grupo Suelos. CIEFAP – GTZ, p 34

  • Kail J, Wolter C (2013) Pressures at larger spatial scales strongly influence the ecological status of heavily modified river water bodies in Germany. Sci Total Environ 454–455:40–50. doi:10.1016/j.scitotenv.2013.02.096

    Article  Google Scholar 

  • Kitzberger T (2003) Regímenes de fuego en el gradiente bosque-estepa del noroeste de Patagonia: variacion espacial y tendencias temporales. In: Kunst CR, Bravoy S, Panigatti JL (eds) Fuego en los ecosistemas argentinos. INTA, Santiago del Estero, pp 79–92

    Google Scholar 

  • Kutschker AM, Brand C, Miserendino ML (2009) Un índice de calidad de ribera para ambientes lóticos de cordillera patagónica sometidos a diferentes usos de la tierra. Ecol Austral 19:19–34

    Google Scholar 

  • Lammert M, Allan J (1999) Environmental auditing: assessing biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environ Manag 23(2):257–270. doi:10.1007/s002679900184

    Article  Google Scholar 

  • León RJC, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Austral 8:125–144

    Google Scholar 

  • Lopez RD, Fennessy MS (2002) Testing the floristic quality assessment index as an indicator of wetland condition. Ecol Appl 12:487–497. doi:10.2307/3060957

    Article  Google Scholar 

  • Lussier SM, Da Silva SN, Charpentier M, Heltshe JF, Cormier SM, Klemm DJ, Jayaraman S (2008) The influence of suburban land use on habitat and biotic integrity of coastal Rhode Island streams. Environ Monit Assess 139(1–3):119–136. doi:10.1007/s10661-007-9820-1

    Article  CAS  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale MW, Evans H, Clout M, Bazzaz F (2000) Invasiones biológicas: causas, epidemiología, consecuencias globales y control. Tóp en Ecol 5:1–19

    Google Scholar 

  • Masi CI, Miserendino ML (2009) Usos de la tierra y distribución de la materia orgánica particulada béntica en ríos de montaña (Patagonia, Argentina). Ecol Austral 19:185–196

    Google Scholar 

  • Matteucci SD, Colma A (1982) Metodología para el estudio de la vegetación. OEA. Monografía No 22, Washington, DC, p 168

  • McCormick FH, Hughes RM, Kaufmann PR, Peck DV, Stoddard JL, Herlihy AT (2001) Development of an index of biotic integrity for the Mid-Atlantic Highlands region. Trans Am Fish Soc 130:857–877. doi:10.1577/1548-8659

    Article  Google Scholar 

  • Mesa LM (2014) Influence of riparian quality on macroinvertebrate assemblages in subtropical mountain streams. J Nat Hist 48(19–20):1153–1167. doi:10.1080/00222933.2013.861937

    Article  Google Scholar 

  • Miserendino ML (2007) Macroinvertebrate functional organization and water quality in a large arid river from Patagonia (Argentina). Ann Limnol Int J Limnol 43:133–145. doi:10.1051/limn:2007008

    Article  Google Scholar 

  • Miserendino ML, Masi CI (2010) The effects of land use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. Ecol Indic 10:311–319. doi:10.1016/j.ecolind.2009.06.008

    Article  CAS  Google Scholar 

  • Miserendino ML, Pizzolón LA (1999) Rapid assessment of river water quality using macroinvertebrates: a family level biotic index for the Patagonic Andean zone. Acta Limnol Bras 11:137–148

    Google Scholar 

  • Miserendino ML, Pizzolón LA (2000) Macroinvertebrates of a fluvial system in Patagonia: altitudinal zonation and functional structure. Arch Hydrobiol 150:55–83

    Google Scholar 

  • Miserendino ML, Pizzolón LA (2004) Interactive effects of basin features and land-use change on macroinvertebrate communities of headwater streams in the Patagonian Andes. River Res Appl 20:967–983. doi:10.1002/rra.798

    Article  Google Scholar 

  • Miserendino ML, Brand C, Di Prinzio C (2008) Assessing urban impacts on water quality, benthic communities and fish in streams of the andes mountains, patagonia (Argentina). Water Air Soil Pollut 194:91–110. doi:10.1007/s11270-008-9701-4

    Article  CAS  Google Scholar 

  • Miserendino ML, Casaux R, Archangelsky M, Di Prinzio CY, Brand C, Kutschker AM (2011) Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams. Sci Total Environ 409:612–624. doi:10.1016/j.scitotenv.2010.10.034

    Article  CAS  Google Scholar 

  • Munné A, Solá C, Prat N (1998) QBR Un índice rápido para la evaluación de la calidad de los ecosistemas de ribera. Tecnol del Agua 175:20–37

    Google Scholar 

  • Navarro CI, Fernández ZJB, Marigliano NL, Antelo CM (2011) Avifauna asociada a sectores de bosques ribereños con modificaciones antropogénicas. Tucumán Acta Zool Lillo 55(1):109–122

    Google Scholar 

  • Nelson SM (2010) Response of stream macroinvertebrate assemblages to erosion control structures in a wastewater dominated urban stream in the southwestern U.S. Hydrobiologia 663(1):51–69. doi:10.1007/s10750-010-0550-y

    Article  Google Scholar 

  • Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) (2014) MODIS subsetted land products, Collection 5. Available on-line, ORNL DAAC, Oak Ridge, Tennessee. (http://daac.ornl.gov/MODIS/modis.html). Accessed 25 Sept 2014

  • Paruelo JM, Beltrán A, Jobbágy E, Sala OE, Rodolfo A (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8:85–101

    Google Scholar 

  • Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central Chile. Conserv Biol 18(1):238–248. doi:10.1111/j.1523-1739.2004.00300.x

    Article  Google Scholar 

  • Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Evol 32:333–365. doi:10.1146/annurev.ecolsys.32.081501.114040

    Article  Google Scholar 

  • Pizzolon L, Miserendino ML, Alday G (2001) Proyecto Monitoreo de la Calidad del Agua en el Sistema Hídrico Esquel-Percy. Informe Final, campaña 2000. Convenio Cooperativa 16 de Octubre – UNPSJB

  • Price K, Leigh DS (2006) Comparative water quality of lightly- and moderately-impacted streams in the southern Blue Ridge Mountains USA. Environ Monit Assess 120(1–3):269–300. doi:10.1007/s10661-005-9060-1

    Article  CAS  Google Scholar 

  • Quinteros CP, Hansen N, Kutschker AM (2010) Composición y diversidad del sotobosque de ñire (Nothofagus antarctica) en función de la estructura del bosque. Ecol Austral 20:225–234

    Google Scholar 

  • Quinteros CP, López Bernal PM, Gobbi ME, Bava J (2012) Distance to flood meadows as a predictor of use of Nothofagus pumilio forest by livestock and resulting impact in Patagonia Argentina. Agrofor Syst 84(2):261–272. doi:10.1007/s10457-011-9461-9

    Article  Google Scholar 

  • Quinteros CP, Bava JO, López Bernal PM, Feijóo SM, Arias NS (2013) Dieta de verano de bovinos pastoreando en bosques de lenga (Nothofagus pumilio) y mallines de Chubut Argentina. Rev FCA UNCUYO 45(1):285–292

    Google Scholar 

  • Relyea CD, Minshall GW, Danehy RJ (2012) Development and validation of an aquatic fine sediment biotic index. Environ Manag 49(1):242–252. doi:10.1007/s00267-011-9784-3

    Article  Google Scholar 

  • Richardson JS (2008) Aquatic arthropods and forestry: effects of large-scale land use on aquatic systems in Nearctic. Can Entomol 140:495–509. doi:10.4039/n07-LS04

    Article  Google Scholar 

  • Richardson JS, Taylor E, Schluter D, Pearson M, Hatfield T (2010) Do riparian zones qualify as critical habitat for endangered freshwater fishes? Can J Fish Aquat Sci 67(7):1197–1204. doi:10.1139/F10-063

    Article  Google Scholar 

  • Rosenberg DM, Resh VH (1993) Introduction to freshwater biomonitoring and benthic macroinvertebrates. In: Rosenberg DM, Resh VH (eds) Freshwater biomonitoring and benthic invertebrates. Chapman & Hall, London

    Google Scholar 

  • Scrimgeour GJ, Kendall SA (2003) Effects of livestock grazing on benthic invertebrates from a native grassland ecosystem. Freshw Biol 48:347–362

    Article  Google Scholar 

  • Sirombra MG, Mesa LM (2012) A method for assessing the ecological quality of riparian forests in subtropical Andean streams: qBRy index. Ecol Indic 20:324–331. doi:10.1016/j.ecolind.2012.02.021

    Article  Google Scholar 

  • Snyder CD, Young JA, Villella R, Lemarié DP (2003) Influences of upland and riparian land use patterns on stream biotic integrity. Land Ecol 18(7):647–664. doi:10.1023/B:LAND.0000004178.41511.da

    Article  Google Scholar 

  • Stoddard JL (2004) Use of ecological regions in aquatic assessments of ecological condition. Environ Manag 34 Suppl 1(2):S61–S70. doi:10.1007/s00267-003-0193-0

    Article  Google Scholar 

  • Sutherland AB, Culp JM, Benoy GA (2012) Evaluation of deposited sediment and macroinvertebrate metrics used to quantify biological response to excessive sedimentation in agricultural streams. Environ Manag 50(1):50–63. doi:10.1007/s00267-012-9854-1

    Article  Google Scholar 

  • Ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to canoco for windows: software for canonical community ordination (version 4). Microcomputer power, Ithaca, p 352

    Google Scholar 

  • Ter Braak CJF, Smilauer P (1999) CANOCO for Windows (version 4.02) a FORTRAN program for canonical community ordination. Centre for Biometry, Wageningen

    Google Scholar 

  • Theodoropoulos C, Iliopoulou-Georgudaki J (2010) Response of biota to land use changes and water quality degradation in two medium-sized river basins in southwestern Greece. Ecol Indic 10(6):1231–1238. doi:10.1016/j.ecolind.2010.04.010

    Article  CAS  Google Scholar 

  • Thomas LK, Leyer I (2014) Age structure, growth performance and composition of native and invasive Salicaceae in Patagonia. Plant Ecol. doi:10.1007/s11258-014-0362-7

    Google Scholar 

  • Townsend CR, Scarsbrook M (1997) The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnol Oceanogr 42(59):938–949. doi:10.4319/lo.1997.42.5.0938

    Article  Google Scholar 

  • Ward JV (1989) The four dimensional nature of lotic ecosystems. J North Am Benthol Soc 8:2–8. doi:10.2307/1467397

    Article  Google Scholar 

  • Ward JV, Stanford JA (1983) The intermediate-disturbance hypothesis: an explanation for biotic diversity patterns in lotic ecosystems. In: Bartell S, Fontaine T (eds) Dynamics of lotic ecosystems. Ann Arbor Sci, Ann Arbor

    Google Scholar 

  • Wetzel RG, Likens GE (1991) Limnological analysis. Springer, New York. doi:10.1007/978-1-4757-4098-1

    Book  Google Scholar 

  • Wischmeier WH, Smith D (1978) Predicting Rainfall Erosion Losses. A guide to conservation planning. Agricultural Handbook No 537. USDA. Washington, DC, p 58

Download references

Acknowledgments

This paper was supported by the UNPSJB (PI- R/7-388), PIP-CONICET 11220080101907. We greatly appreciate the reviews of Dr. Sarah Morley for her thoughtful and constructive suggestions. Thanks to anonymous reviewers for valuable comments that greatly improved the manuscript. This is Scientific Contribution No 113 from LIESA-CIEMEP-CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miserendino M. Laura.

Appendix

Appendix

See Tables 4, 5 and 6.

Table 4 Distribution and relative abundance (%) of riparian plants per site, total richness, and coverage of exotics at Percy River basin during the study (February 2011), Chubut, Argentina
Table 5 Mean density of macroinvertebrate taxa (ind m−2), total density, and total richness per site, at Percy River basin during the study (February 2011), Chubut, Argentina
Table 6 Status of conservation (percentage of basin area) upstream of each site (1: high, 2: moderate, 3: low or none), component values of QBRp and habitat condition indexes at Percy River sites during the study (February 2011), Chubut, Argentina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laura, M.M., Adriana, M.K., Cecilia, B. et al. Ecological Status of a Patagonian Mountain River: Usefulness of Environmental and Biotic Metrics for Rehabilitation Assessment. Environmental Management 57, 1166–1187 (2016). https://doi.org/10.1007/s00267-016-0688-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-016-0688-0

Keywords

Navigation