Skip to main content

Advertisement

Log in

European Tamaricaceae in Bioengineering on Dry Soils

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

We tested the bioengineering capabilities and resistance to drought of cuttings of two typical riparian species of Mediterranean and Alpine streams scarcely used in soil bioengineering: Myricaria germanica (L.) Desv. and Tamarix gallica L. We conducted two experiments, one ex situ and one in situ, with different drought treatments on cuttings of these two species in comparison with Salix purpurea L., a willow very commonly used in bioengineering. The biological traits considered were resprouting/survival rate, quantity of structural roots, above- and belowground biomass, shoot-to-root ratio, and ratio of the biomass increase between the first and second season. T. gallica and M. Germanica showed generally good capabilities for soil bioengineering use. T. gallica showed especially good resprouting rates in drought conditions with a survival rate of 97 % in dry modality of the in situ experiment. M. germanica cuttings presented a much lower survival rate than the other two species in in situ experiments with harsh drought conditions from the beginning. T. gallica had a lower shoot-to-root ratio than S. purpurea for all drought treatments. M. germanica and T. gallica showed a very significant increase in belowground biomass during the second vegetative period, demonstrating that these species can quickly achieve strong anchoring. These observations confirmed the interest of these species in bioengineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AbdAllah AA, Badawy SA, Zayed BA, Elgohary AA (2010) The role of root system traits in the drought tolerance of rice (Oryza sativa L.). World Acad Sci Eng Technol 68:1378–1382

    Google Scholar 

  • Adam P, Debiais N, Gerber F, Lachat B (2008) Le génie végétal. Un manuel technique au service de l’aménagement et de la restauration des milieux aquatiques. La Documentation Française, Paris

  • Adrover M, Forss AL, Ramon G, Vadell J, Moya G, Martinez Taberner A (2008) Selection of woody species for wastewater enhancement and restoration of riparian woodlands. J Environ Biol 29:357–361

    CAS  Google Scholar 

  • Alshammary SF (2007) Some potential plants of coastal and inland salt affected soils and their relation to soil properties. Asian J Plant Sci 6:821–826

    Article  CAS  Google Scholar 

  • Anderson JE (1982) Factors controlling transpiration and photosynthesis in Tamarax Chinensis Lour. Ecology 63:48–56

    Article  Google Scholar 

  • Arizpe D, Mendes A, Rabaça J (2009) Sustainable riparian zones, a management guide. Generalitat Valenciana, Spain

    Google Scholar 

  • Benkler C, Bregy J (2010) Myricaria germanica, Experiments regarding seed germination & water stress vol Natural scientific term paper within the project “Integrales Flussgebietsmanagement”. Eidgenössische Technische Hochschule Zürich, Zürich

  • Bissardon M, Guibal L, Rameau JL (1997) Corine biotopes, types d’habitats français. ENGREF-ATEN, Nancy

    Google Scholar 

  • Busch DE, Smith SD (1993) Effects of fire on water and salinity relations of riparian woody taxa. Oecologia 94:186–194

    Article  Google Scholar 

  • Carleton MA (1914) Adaptation of the tamarisk for dry lands. Science 39:692–694

    Article  CAS  Google Scholar 

  • Cavaillé P, Dommanget F, Daumergue N, Loucougaray G, Spiegelberger T, Tabacchi E, Evette A (2013) Biodiversity assessment following a naturality gradient of riverbank protection structures in French prealps rivers. Ecol Eng 53:23–30. doi:10.1016/j.ecoleng.2012.12.105

    Article  Google Scholar 

  • Chapin FSI, Schulze E-D, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447

    Article  Google Scholar 

  • Cleverly JR, Smith SD, Sala A, Devitt DA (1997) Invasive capacity of Tamarix ramosissima in a Mojave Desert floodplain: the role of drought. Oecologia 111:12–18

    Article  Google Scholar 

  • Conesa HM, Faz Ã, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district (SE Spain). Sci Total Environ 366:1–11

    Article  CAS  Google Scholar 

  • Crow P, Houston TJ (2004) The influence of soil and coppice cycle on the rooting habit of short rotation poplar and willow coppice. Biomass Bioenergy 26:497–505

    Article  Google Scholar 

  • Dagar JC, Singh G, Singh NT (2001) Evaluation of forest and fruit trees used for rehabilitation of semiarid alkali-sodic soils in India. Arid Soil Res Rehabil 15:115–133

    CAS  Google Scholar 

  • Danjon F, Fourcaud T, Bert D (2005) Root architecture and wind-firmness of mature Pinus pinaster. New Phytol 168:387–400. doi:10.1111/j.1469-8137.2005.01497.x

    Article  Google Scholar 

  • De Baets S, Poesen J, Knapen A, Barbera GG, Navarro JA (2007) Root characteristics of representative Mediterranean plant species and their erosion-reducing potential during concentrated runoff. Plant Soil 294:169–183

    Article  CAS  Google Scholar 

  • De Baets S, Poesen J, Reubens B, Wemans K, De Baerdemaeker J, Muys B (2008) Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 305:207–226

    Article  CAS  Google Scholar 

  • Everitt BL (1980) Ecology of saltcedar—a plea for research (Tamarix chinensis). Environ Geol 3:77–84

    Article  Google Scholar 

  • Evette A, Balique C, Lavaine C, Rey F, Prunier P (2011) Using ecological and biogeographical features to produce a typology of the plant species used in bioengineering for riverbank protection in Europe. River Res Appl. doi:10.1002/rra.1560

    Google Scholar 

  • Gary HL, Horton JS (1965) Some sprouting characteristics of five-stamen tamarisk vol Research Note RM-39. Rocky Mountain Forest and Range Experiment Station, Forest Service, U.S. Dept. of Agriculture, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104

    Article  Google Scholar 

  • Graf C, Böll A, Graf F (2003) Pflanzen im Einsatz gegen Erosion und oberflächennahe Rutschungen Merkblatt für die. Praxis 37:1–8

    Google Scholar 

  • Gray D, Sotir R (1996) Biotechnical and soil bioengineering slope stabilization—a practical guide for erosion control. Wiley, New York

    Google Scholar 

  • Greer E, Pezeshki SR, Shields Jr FD (2006) Influences of cutting diameter and soil moisture on growth and survival of black willow, Salix nigra. J Soil Water Conserv 510

  • Hansen PL, Pfister RD, Boggs K, Cook BJ, Joy J, Hinckley DK (1995) Classification and management of Montana’s riparian and wetland sites, vol 54. The University of Montana, School of Forestry, Montana Forest and Conservation Experiment Station, Missoula

    Google Scholar 

  • Hartmann HT, Kester DE, Davies F, Geneve R (1996) Plant propagation: principles and practices, 6th edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Houghton JT et al. (2001) Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge

  • Hultine KR, Bush SE, Ehleringer JR (2010) Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal. Ecol Appl 20:347–361

    Article  CAS  Google Scholar 

  • IPCC (2007) Fourth Assessment Report—contribution of working group II—summary for policymakers—“the physical science basis”. Intergovernmental Panel on Climate Change, Genève

  • Kammerer H (2003) Artenschutzprojekt Deutsche Tamarisk—Möglichkeiten und Aussichten Einerwiederansiedelung von Myricaria germanica im Gesäuse Nationalpark Gesäuse GmbH

  • Karrenberg S, Blaser S, Kollmann J, Speck T, Edwards PJ (2003) Root anchorage of saplings and cuttings of woody pioneer species in a riparian environment. Funct Ecol 17:170–177

    Article  Google Scholar 

  • Koch C, Kollmann J (2012) Clonal re-introduction of endangered plant species: the case of German False Tamarisk in pre-alpine rivers. Environ Manag 50:217–225

    Article  Google Scholar 

  • Kramer K, Vreugdenhil SJ, Van der Werf DC (2008) Effects of flooding on the recruitment, damage and mortality of riparian tree species: a field and simulation study on the Rhine floodplain. For Ecol Manage 255:3893–3903

    Article  Google Scholar 

  • Kudrnovsky H (2002) Die Deutsche Tamariske an der Isel. Im Auftrag des Österreichischen Alpenvereins, Innsbruck

    Google Scholar 

  • Kudrnovsky H (2013) Alpine rivers and their ligneous vegetation with Myricaria germanica and riverine landscape diversity in the Eastern Alps: proposing the Isel river system for the Natura 2000 network. Ecomont 5:5–18. doi:10.1553/ecomont-5-1s5

    Article  Google Scholar 

  • Kumari B (2008) Tree planting—an answer for improvement of saline/alkaline and waterlogged soils. Ann Biol 24:81–84

    Google Scholar 

  • Lesica P, DeLuca T (2004) Is tamarisk allelopathic? Plant Soil 267:357–365. doi:10.1007/s11104-005-0153-y

    Article  CAS  Google Scholar 

  • Li J, Zhao C, Zhu H, Li Y, Wang F (2007a) Effect of plant species on shrub fertile island at an oasis-desert ecotone in the South Junggar Basin. China J Arid Environ 71:350–361

    Article  Google Scholar 

  • Li Z, Wu S, Wang X, He M, Ge L, Mu H, Xu G (2007b) Bio-geomorphologic growth process of Tamarix nabkha in the Hotan River basin of Xinjiang. Acta Geogr Sin 62:462–470

    Google Scholar 

  • Li Z, Yaning C, Weihong L, Xin L (2007c) Responses of Tamarix ramosissima ABA accumulation to changes in groundwater levels and soil salinity in the lower reaches of Tarim River. China Acta Ecol Sin 27:4247–4251

    Article  Google Scholar 

  • Liu Y, Rauch HP, Zhang J, Yang X, Gao J (2014) Development and soil reinforcement characteristics of five native species planted as cuttings in local area of Beijing. Ecol Eng 71:190–196. doi:10.1016/j.ecoleng.2014.07.017

    Article  CAS  Google Scholar 

  • Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332

    Article  CAS  Google Scholar 

  • Morgan RPC (2005) Soil erosion and conservation, 3rd edn. Blackwell Publishing Ltd, Oxford

    Google Scholar 

  • Müller N, Scharm S (2001) The importance of seed rain and seed bank for the recolonisation of gravel bars in alpine rivers. Studies on the Vegetation of Alluvial Plains Papers in commemoration of Prof Dr S Okuda’s retirement: studies on the vegetation of alluvial plants. Yokohama, pp 127–140

  • Norris JE, Stokes A, Mickovski B, Cammeraat E, Van Beek R, Nicoll BC, Achim A (2008) Slope stability and erosion control. Springer, Dordrecht

    Book  Google Scholar 

  • Pezeshki SR, Li S, Shields FD Jr, Martin LT (2007) Factors governing survival of black willow (Salix nigra) cuttings in a streambank restoration project. Ecol Eng 29:56–65

    Article  Google Scholar 

  • Piégay H, Darby SE, Mosselman E, Surian N (2005) A review of techniques available for delimiting the erodible corridor: a sustainable approach to managing bank erosion. River Res Appl 21:773–789

    Article  Google Scholar 

  • Qong M, Takamura H, Hudaberdi M (2002) Formation and internal structure of Tamarix cones in the Taklimakan Desert. J Arid Environ 50:81–97

    Article  Google Scholar 

  • Rameau JC, Mansion D, Dumé G, Gauberville C, Bardat J, Bruno E, Keller R (2008) Flore forestière française: guide écologique illustré. Région méditerranéenne, vol 3. Institut pour le développement forestier, Paris

  • Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees 21:385–402

    Article  Google Scholar 

  • Rood SB, Kalischuk AR, Polzin ML, Braatne JH (2003) Branch propagation, not cladoptosis, permits dispersive, clonal reproduction of riparian cottonwoods. Forest Ecol Manag 186:227–242

    Article  Google Scholar 

  • Rytter RM, Hansson AC (1993) Seasonal amount, growth and depth distribution of fine roots in an irrigated and fertilizes Salix viminalis L. plantation. Biomass Bioenergy 11:129–137

    Article  Google Scholar 

  • Salinas Bonillo MJ (1999) Experiencias de estaquillado en plantas ribereñas de ambientes semiáridos Monografías de Flora y Vegetación Béticas 11:157–169

  • Sandercock PJ, Hooke JM (2010) Assessment of vegetation effects on hydraulics and of feedbacks on plant survival and zonation in ephemeral channels. Hydrol Process 24:695–713

    Article  Google Scholar 

  • Sauli G, Cornelini P (2007) The application of native species of shrubs rooted and as cuttings in soil bioengineering intervention in the mediterranean areas in Italy. Geophysical Research Abstracts, vol. 9, 07869. European Geosciences Union 2007, Vienna

  • Schaff SD, Pezeshki SR (2003) Effects of soil conditions on survival and growth of black willow cuttings. Environ Manage 31:748–763

    Article  Google Scholar 

  • Schiechtl HM (1973) Sicherungsabeiten im Landschaftsbau. Verlag G.D.W, Callwey

    Google Scholar 

  • Schiechtl HM (1980) Bioengineering for land reclamation and conservation. University of Alberta Press, Edmonton

    Google Scholar 

  • Schiechtl HM, Stern R (1996) Ground bioengineering techniques. For slope protection and erosion control. Blackwell, London

    Google Scholar 

  • Smith SD, Devitt DA, Sala A, Cleverly JR, Busch DE (1998) Water relations of riparian plants from warm desert regions. Wetlands 18:687–696

    Article  Google Scholar 

  • Stokes A (2007) Eco- and ground bio-engineering: the use of vegetation to improve slope stability. In: Proceedings of the First International Conference on Eco-Engineering, Springer, 13–17 Sept 2004

  • Tallent-Halsell NG, Walker LR (2002) Responses of Salix gooddingii and Tamarix ramosissima to flooding. Wetlands 22:776–785

    Article  Google Scholar 

  • Thomson JR, Bond NR, Cunningham SC, Metzeling L, Reich P, Thompson RM, Mac Nally R (2012) The influences of climatic variation and vegetation on stream biota: lessons from the Big Dry in southeastern Australia. Global Change Biol 18:1582–1596. doi:10.1111/j.1365-2486.2011.02609.x

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Arau jo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci 102:8245–8250

    Article  CAS  Google Scholar 

  • USDA (2001) Technical Note 1. Plant species with rooting ability from live hardwood materials for use in soil bioengineering techniques. In: Burgdorf DW, Miller C, Wright S, Morganti CE, Darris D, Sakamoto G, the Rose Lake PMC 2007 (eds) Plant Materials Program. USDA, NRCS, Washington, DC

  • Vandersande MW, Glenn EP, Walworth JL (2001) Tolerance of five riparian plants from the lower Colorado River to salinity drought and inundation. J Arid Environ 49:147–159

    Article  Google Scholar 

  • Venti D, Bazzurro F, Palmeri F, Uffreduzzi T, Venanzoni R, Gibelli G (2003) Manuale tecnico di Ingegneria Naturalistica della Provincia di Terni. Applicabilità delle tecniche, limiti e soluzioni. Provincia di Terni Servizio Assetto del Territorio - Ufficio Urbanistica, Terni

  • Walker LR, Barnes PL, Powell EA (2006) Tamarix aphylla: a newly invasive tree in southern Nevada. West N Am Natural 66:191–201

    Article  Google Scholar 

  • Yin CH, Feng G, Zhang F, Tian CY, Tang C (2009) Enrichment of soil fertility and salinity by tamarisk in saline soils on the northern edge of the Taklamakan Desert. Agric Water Manag 97:1978–1986

    Article  Google Scholar 

  • Zhang J, Jiang J, Xing S (2008) Planting techniques of Tamarix chinensis and its effect on saline soil remediation. In: 2nd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2008), Shanghai, pp 4259–4261

  • Zuffi D (1989) Génie Biologique - Cours sur la stabilisation végétale des talus. Inspection Cantonale des Forêts. Fribourg

    Google Scholar 

Download references

Acknowledgments

This project was supported by the National Research Institute of Science and Technology for Environment and Agriculture, France. The authors thank the Pépinière Forestière de l’Etat from Aix les Milles, France, its manager Patrice Brahic, and its technical team. We also thank the anonymous referees who have allowed us to improve the manuscript substantially. We thank Jacky Girel Vincent Breton, Hanna Chole, Nathan Daumergue, Céline Emberger, Sophie Labonne, Séverine Louis, Eric Mermin, the trainees Thibault Berchoud, Perrine Gonnet, Baptiste Lemaire, and Sylvie Varray for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Evette.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavaine, C., Evette, A. & Piégay, H. European Tamaricaceae in Bioengineering on Dry Soils. Environmental Management 56, 221–232 (2015). https://doi.org/10.1007/s00267-015-0499-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-015-0499-8

Keywords

Navigation