Skip to main content

Advertisement

Log in

Exosomes Derived from Human Adipose-Derived Stem Cells Cannot Distinctively Promote Graft Survival in Cryopreservation Fat Grafting

  • Original Articles
  • Basic Science/Experimental
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Cryopreserved fat has limited clinical applications due to its rapid absorption, high degree of fibrosis, and risk of complications after grafting. Many studies have verified that Adipose-derived mesenchymal stem cell-derived exosomes (ADSC-Exos) can improve fresh fat graft survival. This study assessed whether ADSC-Exos could improve the survival of cryopreserved fat grafts.

Methods

Exosomes were isolated from human ADSCs were subcutaneously engrafted with adipose tissues stored under different conditions (fresh; cryopreserved for 1 month) into the backs of BALB/c nude mice (n = 24), and exosomes or PBS were administered weekly. Grafts were harvested at 1, 2, 4, and 8 weeks, and fat retention rate, histologic, and immunohistochemical analyses were conducted.

Results

At 1, 2, and 4 weeks after the transfer, cryopreserved fat grafts in groups of exosome-treated showed better fat integrity, fewer oil cysts, and reduced fibrosis. Further investigations of macrophage infiltration and neovascularization revealed that those exosomes increased the number of M2 macrophages at 2 and 4 weeks (p<0.05), but had limited impact on vascularization (p>0.05). It's important to note that no significant differences (p>0.05) were observed between the two groups in both histological and immunohistochemical evaluations at 8 weeks post-transplantation.

Conclusions

This study suggests that ADSC-Exos could improve the survival of cryopreserved fat grafts in the short term (within 4 weeks), but the overall improvement was poor (after 8 weeks). This suggests that the utility of using ADSC-Exos to treat cryopreserved adipose tissue grafts is limited.

No Level Assigned

This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Khouri RK, Khouri RK (2017) Current clinical applications of fat grafting. Plast Reconstr Surg 140:466e–486e

    Article  CAS  PubMed  Google Scholar 

  2. Del Vecchio DA, Villanueva NL, Mohan R, Johnson B, Wan D, Venkataram A, Rohrich RJ (2018) Clinical implications of gluteal fat graft migration: a dynamic anatomical study. Plast Reconstr Surg 142:1180–1192

    Article  PubMed  Google Scholar 

  3. Sinna R, Delay E, Garson S, Delaporte T, Toussoun G (2010) Breast fat grafting (lipomodelling) after extended latissimus dorsi flap breast reconstruction: a preliminary report of 200 consecutive cases. J Plast Reconstr Aesthet Surg 63:1769–1777

    Article  PubMed  Google Scholar 

  4. Herold C, Ueberreiter K, Busche MN, Vogt PM (2013) Autologous fat transplantation: volumetric tools for estimation of volume survival. A systematic review. Aesthetic Plast Surg 37:380–387

    Article  PubMed  Google Scholar 

  5. Dong Z, Peng Z, Chang Q, Zhan W, Zeng Z, Zhang S, Lu F (2015) The angiogenic and adipogenic modes of adipose tissue after free fat grafting. Plast Reconstr Surg 135:556e–567e

    Article  CAS  PubMed  Google Scholar 

  6. Mizoguchi T, Kijima Y, Hirata M, Kaneko K, Arima H, Nakajo A, Higashi M, Tabata K, Koriyama C, Arigami T, Uenosono Y, Okumura H, Maemura K, Ishigami S, Yoshinaka H, Shinden Y, Ueno S, Natsugoe S (2015) Histological findings of an autologous dermal fat graft implanted onto the pectoralis major muscle of a rat model. Breast Cancer 22:578–585

    Article  PubMed  Google Scholar 

  7. Coleman SR (2001) Structural fat grafts: the ideal filler? Clin Plast Surg 28:111–119

    Article  CAS  PubMed  Google Scholar 

  8. Gal S, Pu LLQ (2020) An update on cryopreservation of adipose tissue. Plast Reconstr Surg 145:1089–1097

    Article  CAS  PubMed  Google Scholar 

  9. Li BW, Liao WC, Wu SH, Ma H (2012) Cryopreservation of fat tissue and application in autologous fat graft: in vitro and in vivo study. Aesthetic Plast Surg 36:714–722

    Article  PubMed  Google Scholar 

  10. Shu Z, Gao D, Pu LL (2015) Update on cryopreservation of adipose tissue and adipose-derived stem cells. Clin Plast Surg 42:209–218

    Article  PubMed  Google Scholar 

  11. Conti G, Jurga M, Benati D, Bernardi P, Mosconi E, Rigotti G, Buve M, Van Wemmel K, Sbarbati A (2015) Cryopreserved subcutaneous adipose tissue for fat graft. Aesthetic Plast Surg 39:800–817

    Article  PubMed  Google Scholar 

  12. Ko MS, Jung JY, Shin IS, Choi EW, Kim JH, Kang SK, Ra JC (2011) Effects of expanded human adipose tissue-derived mesenchymal stem cells on the viability of cryopreserved fat grafts in the nude mouse. Int J Med Sci 8:231–238

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lidagoster MI, Cinelli PB, Levee EM, Sian CS (2000) Comparison of autologous fat transfer in fresh, refrigerated, and frozen specimens: an animal model. Ann Plast Surg 44:512–515

    Article  CAS  PubMed  Google Scholar 

  14. Atik B, Ozturk G, Erdogan E, Tan O (2006) Comparison of techniques for long-term storage of fat grafts: an experimental study. Plast Reconstr Surg 118:1533–1537

    Article  CAS  PubMed  Google Scholar 

  15. Pu LL, Cui X, Li J, Fink BF, Cibull ML, Gao D (2006) The fate of cryopreserved adipose aspirates after in vivo transplantation. Aesthet Surg J 26:653–661

    Article  CAS  PubMed  Google Scholar 

  16. Zhang PQ, Tan PC, Gao YM, Zhang XJ, Xie Y, Zheng DN, Zhou SB, Li QF (2022) The effect of glycerol as a cryoprotective agent in the cryopreservation of adipose tissue. Stem Cell Res Ther 13:152

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mashiko T, Yoshimura K (2015) How does fat survive and remodel after grafting? Clin Plast Surg 42:181–190

    Article  PubMed  Google Scholar 

  18. Laloze J, Varin A, Bertheuil N, Grolleau JL, Vaysse C, Chaput B (2017) Cell-assisted lipotransfer: current concepts. Ann Chir Plast Esthet 62:609–616

    Article  CAS  PubMed  Google Scholar 

  19. Luan A, Duscher D, Whittam AJ, Paik KJ, Zielins ER, Brett EA, Atashroo DA, Hu MS, Lee GK, Gurtner GC, Longaker MT, Wan DC (2016) Cell-assisted lipotransfer improves volume retention in irradiated recipient sites and rescues radiation-induced skin changes. Stem Cells 34:668–673

    Article  CAS  PubMed  Google Scholar 

  20. Toyserkani NM, Quaade ML, Sorensen JA (2016) Cell-assisted lipotransfer: a systematic review of its efficacy. Aesthetic Plast Surg 40:309–318

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vyas KS, Vasconez HC, Morrison S, Mogni B, Linton S, Hockensmith L, Kabir T, Zielins E, Najor A, Bakri K, Mardini S (2020) Fat graft enrichment strategies: a systematic review. Plast Reconstr Surg 145:827–841

    Article  CAS  PubMed  Google Scholar 

  22. Kolle SF, Fischer-Nielsen A, Mathiasen AB, Elberg JJ, Oliveri RS, Glovinski PV, Kastrup J, Kirchhoff M, Rasmussen BS, Talman ML, Thomsen C, Dickmeiss E, Drzewiecki KT (2013) Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet 382:1113–1120

    Article  PubMed  Google Scholar 

  23. Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J (2012) Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev 18:101–115

    Article  CAS  PubMed  Google Scholar 

  24. Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H (2014) Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl) 92:387–397

    Article  CAS  PubMed  Google Scholar 

  25. See F, Seki T, Psaltis PJ, Sondermeijer HP, Gronthos S, Zannettino AC, Govaert KM, Schuster MD, Kurlansky PA, Kelly DJ, Krum H, Itescu S (2011) Therapeutic effects of human STRO-3-selected mesenchymal precursor cells and their soluble factors in experimental myocardial ischemia. J Cell Mol Med 15:2117–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aronowitz JA, Lockhart RA, Hakakian CS, Hicok KC (2015) Clinical safety of stromal vascular fraction separation at the point of care. Ann Plast Surg 75:666–671

    Article  CAS  PubMed  Google Scholar 

  27. Poulos J (2018) The limited application of stem cells in medicine: a review. Stem Cell Res Ther 9:1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Banyard DA, Salibian AA, Widgerow AD, Evans GR (2015) Implications for human adipose-derived stem cells in plastic surgery. J Cell Mol Med 19:21–30

    Article  PubMed  Google Scholar 

  29. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rani S, Ryan AE, Griffin MD, Ritter T (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23:812–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  32. van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705

    Article  PubMed  Google Scholar 

  33. Tkach M, Thery C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232

    Article  CAS  PubMed  Google Scholar 

  34. Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De Jong OG, Van Balkom BW, Schiffelers RM, Bouten CV, Verhaar MC (2014) Extracellular vesicles: potential roles in regenerative medicine. Front Immunol 5:608

    PubMed  PubMed Central  Google Scholar 

  36. Sun B, Peng J, Wang S, Liu X, Zhang K, Zhang Z, Wang C, Jing X, Zhou C, Wang Y (2018) Applications of stem cell-derived exosomes in tissue engineering and neurological diseases. Rev Neurosci 29:531–546

    Article  CAS  PubMed  Google Scholar 

  37. Dougherty JA, Mergaye M, Kumar N, Chen CA, Angelos MG, Khan M (2017) Potential role of exosomes in mending a broken heart: nanoshuttles propelling future clinical therapeutics forward. Stem Cells Int 2017:5785436

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sun Z, Zhao H (2021) Supplementation with extracellular vesicles derived from adipose-derived stem cells increases fat graft survival and browning in mice: a cell-free approach to construct beige fat from white fat grafting. Plast Reconstr Surg 147:882e–883e

    Article  PubMed  Google Scholar 

  39. Mou S, Li Y, Sun D, Zhou M, Li J, Chen L, Liu S, Yang J, Xiao P, Tong J, Wang Z, Sun J (2022) Delayed supplementation strategy of extracellular vesicles from adipose-derived mesenchymal stromal cells with improved proregenerative efficiency in a fat transplantation model. Stem Cells Int 2022:2799844

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang H, Feng S, Zhang W, Li W, Xu P, Wang X, Ai A (2017) Bone marrow mesenchymal stem cell-derived extracellular vesicles improve the survival of transplanted fat grafts. Mol Med Rep 16:3069–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen B, Cai J, Wei Y, Jiang Z, Desjardins HE, Adams AE, Li S, Kao HK, Guo L (2019) Exosomes are comparable to source adipose stem cells in fat graft retention with up-regulating early inflammation and angiogenesis. Plast Reconstr Surg 144:816e–827e

    Article  CAS  PubMed  Google Scholar 

  42. Mou S, Zhou M, Li Y, Wang J, Yuan Q, Xiao P, Sun J, Wang Z (2019) Extracellular vesicles from human adipose-derived stem cells for the improvement of angiogenesis and fat-grafting application. Plast Reconstr Surg 144:869–880

    Article  CAS  PubMed  Google Scholar 

  43. Chen K, Xiong J, Xu S, Wu M, Xue C, Wu M, Lv C, Wang Y (2022) Adipose-derived stem cells exosomes improve fat graft survival by promoting prolipogenetic abilities through Wnt/beta-catenin pathway. Stem Cells Int 2022:5014895

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li FW, Wang HB, Fang JP, Zeng L, Chen CL, Luo SK (2019) Optimal use ratio of the Stromal Vascular Fraction (SVF): an animal experiment based on micro-CT dynamic detection after large-volume fat grafting. Aesthet Surg J 39:NP213–NP224

    Article  PubMed  Google Scholar 

  45. Cui XD, Gao DY, Fink BF, Vasconez HC, Pu LL (2007) Cryopreservation of human adipose tissues. Cryobiology 55:269–278

    Article  CAS  PubMed  Google Scholar 

  46. Hwang SM, Lee JS, Kim HD, Jung YH, Kim HI (2015) Comparison of the viability of cryopreserved fat tissue in accordance with the thawing temperature. Arch Plast Surg 42:143–149

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247:C125–C142

    Article  CAS  PubMed  Google Scholar 

  48. Elliott GD, Wang S, Fuller BJ (2017) Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76:74–91

    Article  CAS  PubMed  Google Scholar 

  49. Iop L, Paolin A, Aguiari P, Trojan D, Cogliati E, Gerosa G (2017) Decellularized cryopreserved allografts as off-the-shelf allogeneic alternative for heart valve replacement: in vitro assessment before clinical translation. J Cardiovasc Transl Res 10:93–103

    Article  PubMed  Google Scholar 

  50. Erol OO, Agaoglu G (2013) Facial rejuvenation with staged injections of cryopreserved fat and tissue cocktail: clinical outcomes in the past 10 years. Aesthet Surg J 33:639–653

    Article  PubMed  Google Scholar 

  51. Gonda K, Shigeura T, Sato T, Matsumoto D, Suga H, Inoue K, Aoi N, Kato H, Sato K, Murase S, Koshima I, Yoshimura K (2008) Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation. Plast Reconstr Surg 121:401–410

    Article  CAS  PubMed  Google Scholar 

  52. Liew A, O’Brien T (2012) Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther 3:28

    Article  PubMed  PubMed Central  Google Scholar 

  53. He C, Zheng S, Luo Y, Wang B (2018) Exosome theranostics: biology and translational medicine. Theranostics 8:237–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lai RC, Tan SS, Teh BJ, Sze SK, Arslan F, de Kleijn DP, Choo A, Lim SK (2012) Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics 2012:971907

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mashiko T, Wu SH, Kanayama K, Asahi R, Shirado T, Mori M, Sunaga A, Sarukawa S, Uda H, Yoshimura K (2018) Biological properties and therapeutic value of cryopreserved fat tissue. Plast Reconstr Surg 141:104–115

    Article  CAS  PubMed  Google Scholar 

  56. Han YD, Bai Y, Yan XL, Ren J, Zeng Q, Li XD, Pei XT, Han Y (2018) Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochem Biophys Res Commun 497:305–312

    Article  CAS  PubMed  Google Scholar 

  57. Zhu Y, Zhang J, Hu X, Wang Z, Wu S, Yi Y (2020) Extracellular vesicles derived from human adipose-derived stem cells promote the exogenous angiogenesis of fat grafts via the let-7/AGO1/VEGF signalling pathway. Sci Rep 10:5313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Horie K, Kawakami K, Fujita Y, Sugaya M, Kameyama K, Mizutani K, Deguchi T, Ito M (2017) Exosomes expressing carbonic anhydrase 9 promote angiogenesis. Biochem Biophys Res Commun 492:356–361

    Article  CAS  PubMed  Google Scholar 

  59. Hu Y, Rao SS, Wang ZX, Cao J, Tan YJ, Luo J, Li HM, Zhang WS, Chen CY, Xie H (2018) Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics 8:169–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Das S, Halushka MK (2015) Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovasc Pathol 24:199–206

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Y, Yu M, Dai M, Chen C, Tang Q, Jing W, Wang H, Tian W (2017) miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2. J Cell Sci 130:1158–1168

    CAS  PubMed  Google Scholar 

  62. Ma XH, Shi Y, Hou Y, Liu Y, Zhang L, Fan WX, Ge D, Liu TQ, Cui ZF (2010) Slow-freezing cryopreservation of neural stem cell spheres with different diameters. Cryobiology 60:184–191

    Article  CAS  PubMed  Google Scholar 

  63. Cai J, Feng J, Liu K, Zhou S, Lu F (2018) Early macrophage infiltration improves fat graft survival by inducing angiogenesis and hematopoietic stem cell recruitment. Plast Reconstr Surg 141:376–386

    Article  CAS  PubMed  Google Scholar 

  64. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Phipps KD, Gebremeskel S, Gillis J, Hong P, Johnston B, Bezuhly M (2015) Alternatively activated M2 macrophages improve autologous fat graft survival in a mouse model through induction of angiogenesis. Plast Reconstr Surg 135:140–149

    Article  CAS  PubMed  Google Scholar 

  67. Mok H, Feng J, Hu W, Wang J, Cai J, Lu F (2018) Decreased serum estrogen improves fat graft retention by enhancing early macrophage infiltration and inducing adipocyte hypertrophy. Biochem Biophys Res Commun 501:266–272

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

None

Funding

This work was supported by Science and Technology Program of Guangzhou (202102080336, 202201020568)

Author information

Authors and Affiliations

Authors

Contributions

Dr. XYJ is a resident of plastic and reconstructive surgery who completed experimental design and implementation performed the statistical analysis and prepared the manuscript. Dr. FL is an attending physician of plastic and reconstructive surgery who emerged the idea, performed the data analysis, prepared and revised the manuscript. Dr. YC is a resident of plastic and reconstructive surgery and a medical student who participated in the in vitro experiment. Dr. JF is a resident of plastic and reconstructive surgery who helped revise the manuscript and the data analysis. Prof. SKL is a professor and consulting physician of plastic and reconstructive surgery who supervised this project, critically reviewed the manuscript, and was responsible for execution of the study. Prof. HW is a professor and consulting physician of plastic and reconstructive surgery who conceived the research idea, supervised this project, critically reviewed the manuscript, and was responsible for execution of the study. All authors have seen and approved the manuscript.

Corresponding authors

Correspondence to Sheng-kang Luo or Hai-bin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

All participants give their informed consent in writing prior to inclusion in the study.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Human and Animal Rights Statement

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Xy., Li, Fw., Chen, Yq. et al. Exosomes Derived from Human Adipose-Derived Stem Cells Cannot Distinctively Promote Graft Survival in Cryopreservation Fat Grafting. Aesth Plast Surg 47, 2117–2129 (2023). https://doi.org/10.1007/s00266-023-03457-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-023-03457-1

Keywords

Navigation