Skip to main content

Advertisement

Log in

Dance floor clustering: food-anticipatory behavior in persistent and reticent honey bee foragers

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

The honey bee time memory enables foragers to return to a profitable food source in anticipation of the time of day at which they previously collected food from that source. The time memory thus allows foragers to quickly resume exploiting a source after interruption, at the appropriate time of day, without the costs associated with having to rediscover it. A portion of a foraging group (the persistent foragers) will reconnoiter a previously profitable source and may do so for several days. The remaining bees (the reticent foragers) await confirmation of availability before revisiting the source. Recent work has shown that both persistent and reticent bees make extracurricular flights to alternative sources when one food source ceases being productive. Little else, however, is known about reticent foragers. In the present study, we determined that reticent bees congregate near the hive entrance in anticipation of the learned foraging time as do persistent foragers. We then confirmed that the food-anticipatory clustering takes place on the waggle dance floor, as suspected, but also found differences in the number of days that persistent and reticent foragers continue clustering. Finally, we found that persistent foragers had significantly more rewards per day at the source than did reticent foragers, supporting the hypothesis that experience at a food source influences a forager’s decision to become either persistent or reticent. Our findings demonstrate that persistence and reticence are not immutable characteristics of foragers themselves but rather strategies they employ toward different food sources.

Significance statement

Much has been learned in recent years about the honey bee time memory and foraging behavior. Receiving scant attention, however, is the phenomenon of forager bees gathering near the hive entrance, anticipating the time of day when previously productive food sources become available. We show that both persistent and reticent bees (foragers that do and do not investigate the source, respectively) congregate on the waggle dance floor at the appropriate time of day, but, in the absence of food at the source, persistent bees continue to show this behavior a day or two longer than reticent bees do. We also show that experience with the source influences the decision to become persistent or reticent. Our results reveal how foraging experience influences the individual bee’s decision making, thereby providing insights into how foragers are reallocated efficiently among different resources in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bateson M, Desire S, Gertside SE, Wright GA (2011) Agitated honeybees exhibit pessimistic biases. Curr Biol 21:1070–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beekman M (2005) How long will honey bees (Apis mellifera L.) be stimulated by scent to revisit past-profitable forage sites? J Comp Physiol A 191:1115–1120

    Article  Google Scholar 

  • Beekman M, Oldroyd BP, Myerscough MR (2003) Sticking to their choice—honey bee subfamilies abandon declining food sources at a slow but uniform rate. Ecol Entomol 28:233–236

    Article  Google Scholar 

  • Beier W (1968) Beeinflussung der inneren Uhr der Bienen durch Phasenverschiebung des Licht-Dunkel-Zeitgebers. Z Bienenforsch 9:356–378

    Google Scholar 

  • Beier W, Lindauer M (1970) Der Sonnenstand als Zeitgeber für die Biene. Apidologie 1:5–28

    Article  Google Scholar 

  • Beling I (1929) Über das Zeitgedächtnis der Bienen. Z Vgl Physiol 9:259–388

    Article  Google Scholar 

  • Biesmeijer JC, Seeley T (2005) The use of waggle dance information by honey bees throughout their foraging careers. Behav Ecol Sociobiol 59:133–142

    Article  Google Scholar 

  • Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97:107–119

    Article  CAS  PubMed  Google Scholar 

  • Butler CG (1945) The influence of various physical and biological factors of the environment on honeybee activity. An examination of the relationship between activity and nectar concentration and abundance. J Exp Biol 21:5–12

    Google Scholar 

  • Cao TT, Hyland KM, Malechuk A, Lewis LA, Schneider SS (2007) The influence of the vibration signal on worker interactions with the nest and nest mates in established and newly founded colonies of the honey bee, Apis mellifera. Insect Soc 54:144–149

    Article  Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Corbet SA, Delfosse ES (1984) Honeybees and the nectar of Echium plantagineum L. in southeastern Australia. Aust J Ecol 9:125–139

    Article  Google Scholar 

  • Dukas R (2001) Effects of perceived danger on flower choice by bees. Ecol Letters 4:327–333

    Article  Google Scholar 

  • Edge AA, Van Nest BN, Johnson JN, Miller SN, Naeger NL, Boyd SD, Moore D (2012) Diel nectar secretion rhythm in squash (Cucurbita pepo) and its relation with pollinator activity. Apidologie 43:1–16

    Article  Google Scholar 

  • Eisenhardt D (2012) Extinction learning in honey bees. In: Galizia CG, Eisenhardt D, Giurfa M (eds) Honeybee neurobiology and behavior: a tribute to Randolf Menzel. Springer, Berlin, pp. 423–438

    Chapter  Google Scholar 

  • Frisch B, Aschoff J (1987) Circadian rhythms in honeybees: entrainment by feeding cycles. Physiol Entomol 12:41–49

    Article  Google Scholar 

  • Gil M, De Marco RJ (2009) Honeybees learn the sign and magnitude of reward variations. J Exp Biol 212:2830–2834

    Article  PubMed  Google Scholar 

  • Gil M, De Marco RJ, Menzel R (2007) Learning reward expectations in honeybees. Learn Mem 14:491–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Giurfa M, Núñez JA (1992) Foraging by honeybees on Carduus acanthoides: pattern and efficiency. Ecol Entomol 17:326–330

    Article  Google Scholar 

  • Granovskiy B, Latty T, Duncan M, Sumpter DJT, Beekman M (2012) How dancing bees keep track of changes: the role of inspector bees. Behav Ecol 23:588–596. doi:10.1093/beheco/ars002

    Article  Google Scholar 

  • Kleber E (1935) Hat das Zeitgedächtnis der Bienen biologische Bedeutung? Z Vgl Physiol 22:221–262

    Article  Google Scholar 

  • Körner I (1939) Zeitgedächtnis und Alarmierung bei den Bienen. Z Vgl Physiol 27:445–459

    Article  Google Scholar 

  • Mattila HR, Seeley TD (2014) Extreme polyandry improves a honey bee colony’s ability to track dynamic foraging opportunities via greater activity of inspecting bees. Apidologie 45:347–363. doi:10.1007/s13592-013-0252-30

    Article  Google Scholar 

  • Menzel R (1968) Das Gedächtnis der Honigbiene für Spektralfarben I. Kurzzeitiges und lanzeitiges Behalten. Z Vgl Physiol 60:82–102

    Article  Google Scholar 

  • Menzel R, Erber J (1978) Learning and memory in bees. Sci Am 239:80–87

    Article  Google Scholar 

  • Mistlberger R (1994) Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci Biobehav Rev 18:171–195

    Article  CAS  PubMed  Google Scholar 

  • Moore D, Doherty P (2009) Acquisition of a time-memory in forager honey bees. J Comp Physiol A 195:741–751

    Article  Google Scholar 

  • Moore D, Rankin MA (1983) Diurnal changes in the accuracy of the honeybee foraging rhythm. Biol Bull 164:471–482

    Article  Google Scholar 

  • Moore D, Siegfried D, Wilson R, Rankin MA (1989) The influence of time of day on the foraging behavior of the honeybee, Apis mellifera. J Biol Rhythms 4:305–325

  • Moore D, Van Nest BN, Seier E (2011) Diminishing returns: the influence of experience and environment on time-memory extinction in honey bee foragers. J Comp Physiol A 197:641–651

    Article  Google Scholar 

  • Naeger NL, Van Nest BN, Johnson JN, Boyd SD, Southey BR, Rodriguez-Zas SL, Moore D, Robinson GE (2011) Neurogenomic signatures of spatiotemporal memories in time-trained forager honey bees. J Exp Biol 214:979–987

    Article  PubMed  PubMed Central  Google Scholar 

  • Neih JC (1998) The honey bee shaking signal: function and design of a modulatory communication signal. Behav Ecol Sociobiol 42:23–36

    Article  Google Scholar 

  • Pittendrigh CS (1958) Perspectives in the study of biological clocks. In: Buzzati-Traverso AA (ed) Perspectives in marine biology. University of California Press, Berkeley, pp. 239–268

    Google Scholar 

  • Rabinowitch HD, Fahn A, Meir T, Lensky Y (1993) Flower and nectar attributes of pepper (Capsicum annuum L.) plants in relation to their attractiveness to honeybees (Apis mellifera L.). Ann Appl Biol 123:221–232

    Article  Google Scholar 

  • Reinhardt J, Srinivasan MV, Zhang S (2004) Scent-triggered navigation in honeybees. Nature 427:411

    Article  Google Scholar 

  • Renner M (1955) Über die Haltung von Bienen in geschlossenen, künstlich beleuchteten Räumen. Naturwissenschaften 42:539–540

    Article  Google Scholar 

  • Renner M (1957) Neue Versuche über den Zietsinn der Honigbiene. Z Vgl Physiol 40:85–118

    Article  Google Scholar 

  • Saunders DS (2002) Insect clocks. Elsevier Press, Boston

    Google Scholar 

  • Schneider SS, Stamps JA, Gary NE (1986) The vibration dance of the honey bee I. Communication regulating foraging on two time scales. Anim Behav 34:377–385

    Article  Google Scholar 

  • Seeley TD (1995) The wisdom of the hive. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Seeley TD, Towne WF (1992) Tactics of dance choice in honey bees: do foragers compare dances? Behav Ecol Sociobiol 30:59–69

    Article  Google Scholar 

  • Seeley TD, Camazine S, Sneyd J (1991) Collective decision-making in honey bees: how colonies choose among nectar sources. Behav Ecol Sociobiol 28:277–290

    Article  Google Scholar 

  • Seeley TD, Wiedenmüller A, Kühnholz S (1998) The shaking signal of the honey bee informs workers to prepare for greater activity. Ethology 104:10–26

    Article  Google Scholar 

  • Tautz J (2008) The buzz about bees: biology of a superorganism. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Van Nest BN, Moore D (2012) Energetically optimal foraging strategy is emergent property of time-keeping behavior in honey bees. Behav Ecol 23:649–658

    Article  Google Scholar 

  • Visscher PK, Seeley TD (1982) Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology 63:1790–1801

    Article  Google Scholar 

  • von Buttel-Reepen HB (1900) Sind die Bienen Reflexmaschinen? Biol Zbl 20:1–82

    Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge (MA)

    Google Scholar 

  • Wagner AE, Van Nest BN, Hobbs C, Moore D (2013) Persistence, reticence, and the management of multiple time memories by forager honey bees. J Exp Biol 216:1131–1141

    Article  PubMed  Google Scholar 

  • Wahl O (1932) Neue Untersuchungen über das Zeitgedächtnis der Bienen. Z Vgl Physiol 16:529–589

    Google Scholar 

  • Wahl O (1933) Beitrag zur Frage der biologischen Bedeutung des Zeitgedächtnisses der Bienen. Z Vgl Physiol 18:709–717

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

Download references

Acknowledgments

The authors thank Jennifer N. Johnson, Andrea A. Edge, Sam D. Boyd, Curtis Gill, Joanna Magner, Michael Feathers, and Emily Hardgrave for the invaluable help in the field and two anonymous reviewers for many constructive suggestions on the manuscript. Funding was provided by the Denise I. Pav Research Grant, Department of Biological Sciences, East Tennessee State University (B.V.N.) and the US Department of Agriculture grant no. 2006-35302-17278 (D.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darrell Moore.

Ethics declarations

All applicable institutional and national guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by D. Naug

Electronic supplementary material

ESM 1

(PDF 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Nest, B.N., Wagner, A.E., Hobbs, C.N. et al. Dance floor clustering: food-anticipatory behavior in persistent and reticent honey bee foragers. Behav Ecol Sociobiol 70, 1961–1973 (2016). https://doi.org/10.1007/s00265-016-2202-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-016-2202-3

Keywords

Navigation