Skip to main content

Advertisement

Log in

Spatial behavior in relation to mating systems: movement patterns, nearest-neighbor distances, and mating success in diploid and polyploid frog hybrids (Pelophylax esculentus)

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Mating success depends not only on genetic and phenotypic characteristics of males and females but also on their spatial position relative to other individuals, which influences the chances for interactions. Hence, any behavior that affects proximity to other individuals can potentially translate into fitness gain or loss. Here, we investigate the effects of genotype on male movement and distance to nearest neighbor (DNN) in three populations of the edible frog Pelophylax esculentus, a natural hybrid between its parental species Pelophylax ridibundus (genotype RR) and Pelophylax lessonae (LL). The system is particularly suited for such an analysis because the fitness differences between mating with a certain genotype are particularly strong. Moreover, which genotype should be preferred differs among populations where diploid hybrids (LR) live in sympatry with P. lessonae (L–E system) and those where diploid hybrids occur in all-hybrid populations together with triploids (LLR and/or LRR) (E–E system). Hence, we expected differences among genotypes in movement patterns and spatial arrangement within the breeding pond. We did, indeed, find such differences. They were predominantly due to density differences between populations, followed by size and condition differences between males. Most relevant for our question was a difference in DNN: in the E–E system, distances between all three hybrid types were equal, whereas in the L–E system LR hybrids tended to stay closer to LL than to other LR. The results are discussed in relation to previous mate choice experiments and theoretical models about mating preferences in the two systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abt Tietje GJ (2003) Pond use, patterns of reproduction and juvenile recruitment in a mixed waterfrog population. Ph.D. thesis, Universität Zürich

  • Abt G, Reyer H-U (1993) Mate choice and fitness in a hybrid frog: Rana esculenta females prefer Rana lessonae males over their own. Behav Ecol Sociobiol 32:221–228

    Article  Google Scholar 

  • Alves MJ, Coelho MM, Collares-Pereira MJ (2001) Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica 111:375–385

    Article  CAS  PubMed  Google Scholar 

  • Arak A (1983) Male–male competition and mate choice in anuran amphibians. In: Bateson P (ed) Mate choice. Cambridge University Press, Cambridge, pp 181–210

    Google Scholar 

  • Arioli M (2007) Reproductive patterns and population genetics in pure hybridogenetic water frog populations of Rana esculenta. Ph.D. thesis, Universität Zürich

  • Arioli M, Jakob C, Reyer HU (2010) Genetic diversity in water frog hybrids (Pelophylax esculentus) varies with population structure and geographic location. Mol Ecol 19:1814–1828

    Article  PubMed  Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press

  • Bergen K, Semlitsch RD, Reyer HU (1997) Hybrid female matings are directly related to the availability of Rana lessonae and Rana esculenta males in experimental populations. Copeia 1997:275–283

    Article  Google Scholar 

  • Blankenhorn H (1974) Soziale Organisation einer Mischpopulation von Rana lessonae Camerano und Rana esculanta Linnaeus. Ph.D. thesis, Universität Zürich

  • Bullini L (1994) Origin and evolution of animal hybrid species. Trends Ecol Evol 9:422–426

    Article  CAS  PubMed  Google Scholar 

  • Byrne PG, Roberts GA (2004) Intrasexual selection and group spawning in quacking frogs (Crinia georgiana). Behav Ecol 15:872–882

    Article  Google Scholar 

  • Caughley G (1980) Analysis of vertebrate populations. Wiley, London

    Google Scholar 

  • Christiansen DG (2005) A microsatellite-based method for genotyping diploid and triploid water frogs of the Rana esculenta hybrid complex. Mol Ecol Notes 5:190–193

    Article  CAS  Google Scholar 

  • Christiansen DG (2009) Gamete types, sex determination and stable equilibria of all-hybrid populations of diploid and triploid edible frogs (Pelophylax esculentus). BMC Evol Biol 9:135

    Article  PubMed Central  PubMed  Google Scholar 

  • Christiansen DG, Reyer HU (2009) From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs. Evolution 63:1754–1768

    Article  CAS  PubMed  Google Scholar 

  • Christiansen DG, Fog K, Pedersen BV, Boomsma JJ (2005) Reproduction and hybrid load in all-hybrid populations of Rana esculenta water frogs in Denmark. Evolution 59:1348–1361

    Article  PubMed  Google Scholar 

  • Cockburn A, Dalziell AH, Blackmore CJ, Double MC, Kokko H, Osmond HL, Beck NR, Head ML, Wells K (2009) Superb fairy-wren males aggregate into hidden leks to solicit extragroup fertilizations before dawn. Behav Ecol 20:501–510

    Article  Google Scholar 

  • Cody ML (1985) Habitat selection in birds. Academic, London

    Google Scholar 

  • Davies NB, Halliday TR (1979) Competitive mate searching in male common toads, Bufo bufo. Anim Behav 27:1253–1285

    Article  Google Scholar 

  • Dawley RMBJP (1989) Evolution and ecology of unisexual vertebrates. The New York State Museum, Bulletin 466, Albany

  • Ebendal T (1979) Distribution, morphology and taxonomy of the Swedish green frogs (Rana esculenta complex). Mitt Zool Mus Berlin 55:143–152

    Google Scholar 

  • Ebendal T, Uzzell T (1982) Ploidy and immunological distance in Swedish water frogs (Rana esculenta complex). Amphibia-Reptilia 3:125–133

    Article  Google Scholar 

  • Embrechts E, Reyer HU (2012) Age and size of hybrid water frogs: the role of genotype and ecology. Herpetologica 68:468–481

    Article  Google Scholar 

  • Emlen ST, Oring LW (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197:215–223

    Article  CAS  PubMed  Google Scholar 

  • Engeler B, Reyer H-U (2001) Choosy females and indiscriminate males: mate choice in mixed populations of sexual and hybridogenetic water frogs (Rana lessonae, Rana esculenta). Behav Ecol 12:600–606

    Article  Google Scholar 

  • Forester DC, Thompson KJ (1998) Gauntlet behaviour as a male sexual tactic in the American toad (Amphibia: Bufonidae). Behaviour 135:99–119

    Article  Google Scholar 

  • Friedl TWP, Klump GM (2005) Sexual selection in the lek-breeding European treefrog: body size, chorus attendance, random mating and good genes. Anim Behav 70:1141–1154

    Article  Google Scholar 

  • Gatz AJ Jr (1981) Non-random mating by size in American toads, Bufo americanus. Anim Behav 29:1004–1012

    Article  Google Scholar 

  • Gerhardt HC, Klump GM (1988) Masking of acoustic signals by the chorus background-noise in the green tree frog: a limitation on mate choice. Anim Behav 36:1247–1249

    Article  Google Scholar 

  • Gerhardt HC, Dyson ML, Tanner SD, Murphy CG (1994) Female treefrogs do not avoid heterospecific calls as they approach conspecific calls—implications for mechanisms of mate choice. Anim Behav 47:1323–1332

    Article  Google Scholar 

  • Glaettli M, Pescatore L, Goudet J (2006) Proximity-dependent pollen performance in Silene vulgaris. Ann Bot 98:431–437

    Article  PubMed Central  PubMed  Google Scholar 

  • Graf J-D, Polls Pelaz M (1989) Evolutionary genetics of the Rana esculenta complex. In: Dawley R, Bogart JP (eds) Evolution and ecology of unisexual vertebrates. New York State Museum, New York, pp 289–301

    Google Scholar 

  • Grant JWA, Bryant MJ, Soos CE (1995) Operational sex ratio, mediated by synchrony of female arrival, alters the variance of male mating success in Japanese medaka. Anim Behav 49:367–375

    Article  Google Scholar 

  • Grosberg RK (1987) Limited dispersal and proximity-dependent mating success in the colonial Ascidian Botryllus schlosseri. Evolution 41:372–384

    Article  Google Scholar 

  • Günther R (1990) Die Wasserfrösche Europas. A. Ziemsen Verlag, Wittenberg Lutherstadt

    Google Scholar 

  • Günther R, Plötner J (1990) Mating pattern in pure hybrid populations of water frogs, Rana kl. esculenta (Anura, Ranidae). Alytes 8:90–98

    Google Scholar 

  • Günther R, Uzzell T, Berger L (1979) Inheritance patterns in triploid Ranaesculenta” (Amphibia, Salientia). Mitt Zool Mus Berlin 55:35–57

    Google Scholar 

  • Hellriegel B, Reyer HU (2000) Factors influencing the composition of mixed populations of a hemiclonal hybrid and its sexual host. J Evol Biol 13:906–918

    Article  Google Scholar 

  • Heym W-D (1974) Studien zur Verbreitung, Ökologie und Ethologie der Grünfrösche in der Mittleren und Nördlichen Niederlausitz. Mitt Zool Mus Berlin 50:263–285

    Google Scholar 

  • Hoffmann A, Reyer HU (2013) Genomic effects on advertisement call structure in diploid and triploid hybrid waterfrogs (Anura, Pelophylax esculentus kl.). BMC Ecol 13:47

    Article  PubMed Central  PubMed  Google Scholar 

  • Holenweg Peter AK, Reyer HU, Abt Tietje G (2002) Species and sex ratio differences in mixed populations of hybridogenetic water frogs: the influence of pond features. Ecoscience 9:1–11

    Google Scholar 

  • Howard RD (1978) The evolution of mating strategies in bullfrogs, Rana catesbeiana. Evolution 32:850–871

    Article  Google Scholar 

  • Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67

    Article  Google Scholar 

  • Jakob C, Arioli M, Reyer H-U (2010) Ploidy composition in all-hybrid frog populations in relation to ecological conditions. Evol Ecol Res 12:633–652

    Google Scholar 

  • Johnstone RA, Earn DJD (1999) Imperfect female choice and male mating skew on leks of different sizes. Behav Ecol Sociobiol 45:277–281

    Article  Google Scholar 

  • Kierzkowski P, Pasko L, Rybacki M, Socha M, Ogielska M (2011) Genome dosage effect and hybrid morphology—the case of the hybridogenetic water frogs of the Pelophylax esculentus complex. Ann Zool Fenn 48:56–66

    Article  Google Scholar 

  • Kokko H, Rankin DJ (2006) Lonely hearts or sex in the city? Density-dependent effects in mating systems. Philos Trans R Soc B 361:319–334

    Article  Google Scholar 

  • Krebs CJ (2009) Ecology: the experimental analysis of distribution and abundance, 6th edn. Pearson Benjamin Cummings, San Francisco

    Google Scholar 

  • Kuhn B, Schneider H (1984) Mating and territorial calls of Rana ridibunda and their temperature-dependent variability. Zool Anz 212:273–305

    Google Scholar 

  • Kyriakopoulou-Sklavounou P, Loumbourdis N (1990) Contribution to the resproductive biology of Rana ridibunda Pallas (Anura, Ranidae). Amphibia-Reptilia 11:23–30

    Article  Google Scholar 

  • Lengagne T, Joly P (2010) Paternity control for externally fertilised eggs: behavioural mechanisms in the waterfrog species complex. Behav Ecol Sociobiol 64:1179–1186

    Article  Google Scholar 

  • Lengagne T, Grolet O, Joly P (2006) Male mating speed promote hybridization in the Rana lessonae-Rana esculenta waterfrog system. Behav Ecol Sociobiol 60:123–130

    Article  Google Scholar 

  • Lengagne T, Plenet S, Joly P (2008) Breeding behaviour and hybridization: variation in male chorusing behaviour promotes mating among taxa in waterfrogs. Anim Behav 75:443–450

    Article  Google Scholar 

  • Mayer C, Pasinelli G (2013) New support for an old hypothesis: density affects extra-pair paternity. Ecol Evol 3:694–705

    Article  PubMed Central  PubMed  Google Scholar 

  • Mitchell MA (2009) Anesthetic considerations for amphibians. J Exotic Pet Med 18:40–49

    Article  Google Scholar 

  • Oh KP, Badyaev AV (2010) Structure of social networks in a passerine bird: consequences for sexual selection and the evolution of mating strategies. Am Nat 176:E80–E89

    Article  PubMed  Google Scholar 

  • Orians GH (1969) On the evolution of mating systems on birds and mammals. Am Nat 103:589–603

    Article  Google Scholar 

  • Orians GH, Wittenberger JF (1991) Spatial and temporal scales in habitat selection. Am Nat 137:29–49

    Article  Google Scholar 

  • Ortega J, Arita HT (2002) Subordinate males in harem groups of Jamaican fruit-eating bats (Artibeus jamaicensis): satellites or sneaks? Ethology 108:1077–1091

    Article  Google Scholar 

  • Pagano A, Joly P, Plenet S, Lehman A, Grolet O (2001) Breeding habitat partitioning in the Rana esculenta complex: the intermediate niche hypothesis supported. Ecoscience 8:294–300

    Google Scholar 

  • Pfennig KS (2007) Facultative mate choice drives adaptive hybridization. Science 318:965–967

    Article  CAS  PubMed  Google Scholar 

  • Plenet S, Hervant F, Joly P (2000) Ecology of the hybridogenetic Rana esculenta complex: differential oxygen requirements of tadpoles. Evol Ecol 14:13–23

    Article  Google Scholar 

  • Plötner J (2005) Die westpaläarktischen Wasserfrösche. Laurenti, Bielefeld

    Google Scholar 

  • Plötner J, Klinghardt M (1992) Investigations on the genetic structure and the morphometry of a pure hybrid population of Rana esculenta (Anura, Ranidae) in North Germany. Zool Anz 229:163–184

    Google Scholar 

  • Plötner J, Becker C, Plötner K (1994) Morphometric and DNA investigations into European water frogs (Rana kl.esculenta Synklepton (Anura, Ranidae) from different population systems. Z Zool Syst Evol 32:193–210

    Article  Google Scholar 

  • Psorakis I, Roberts SJ, Rezek I, Sheldon BC (2012) Inferring social network structure in ecological systems from spatio-temporal data streams. J R Soc Interface 9:1–10

    Article  Google Scholar 

  • Reyer HU (2008) Mating with the wrong species can be right. Trends Ecol Evol 23:289–292

    Article  PubMed  Google Scholar 

  • Reyer H-U, Bollmann K, Schläpfer AR, Schymainda A, Klecack G (1997) Ecological determinants of extrapair fertilizations and egg dumping in Alpine water pipits (Anthus spinoletta). Behav Ecol 8:534–543

    Article  Google Scholar 

  • Reyer H-U, Frei G, Som C (1999) Cryptic female choice: frogs reduce clutch size when amplexed by undesired males. Proc R Soc Lond B 266:2101–2107

    Article  CAS  Google Scholar 

  • Richardson C, Lengagne T (2010) Multiple signals and male spacing affect female preferences at cocktail parties in treefrogs. Proc R Soc Lond B277

  • Roesli M, Reyer HU (2000) Male vocalization and female choice in the hybridogenetic Rana lessonae/Rana esculenta complex. Anim Behav 60:745–755

    Article  PubMed  Google Scholar 

  • Rondinelli B (2006) Female choice in all-hybrid populations of Rana esculenta. M.Sc. thesis, Universität Zürich, Zurich

  • Schultz RJ (1969) Hybridization, unisexuality and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Am Nat 103:605–619

    Article  Google Scholar 

  • Som C, Reyer HU (2006) Demography and evolution of pure hybridogenetic frog (Rana esculenta) populations. Evol Ecol Res 8:1235–1248

    Google Scholar 

  • Som C, Anholt BR, Reyer HU (2000) The effect of assortative mating on the coexistence of a hybridogenetic waterfrog and its sexual host. Am Nat 156:34–46

    Article  PubMed  Google Scholar 

  • Sutherland WJ (1996) From individual behaviour to population ecology. Oxford University Press, Oxford

    Google Scholar 

  • Taborsky M (1994) Sneakers, satellites, and helpers—parasitic and cooperative behavior in fish reproduction. Adv Stud Behav 23:1–100

    Article  Google Scholar 

  • Team QD (2013) QGIS geographic information system. Open Source Geospatial Foundation Project, http://qgis.osgeo.org

  • Tunner HG (1974) Die klonale Struktur einer Wasserfroschpopulation. Z Zool Syst Evol 12:309–314

    Article  Google Scholar 

  • Tunner HG (1976) Aggressives Verhalten bei Rana ridibunda, Rana lessonae und der hybriden Rana esculenta. Zool Anz 200:386–390

    Google Scholar 

  • Tunner HG (2000) Evidence for genomic imprinting in unisexual triploid hybrid frogs. Amphibia-Reptilia 21:135–141

    Article  Google Scholar 

  • Tunner HG, Heppich-Tunner S (1991) Genome exclusion and two strategies of chromosome duplication in oogenesis of a hybrid frog. Naturwissenschaften 78:32–34

    Article  Google Scholar 

  • Uzzell T, Berger L (1975) Electrophoretic phenotypes of Rana ridibunda, Rana lessonae, and their hybridogenetic associate, Rana esculenta. P Natl Acad Sci USA 127:13–24

    Google Scholar 

  • Uzzell T, Hotz H (1979) Electrophoretic and morphological evidence for two forms of green frogs (Rana esculenta Complex) in peninsular Italy (Amphibia, Salientia). Mitt Zool Mus Berlin 55:13–27

    Google Scholar 

  • Wahl M (1969) Untersuchungen zur Bio-Akustik des Wasserfrosches Rana esculenta (L.). Oecologia 3:14–55

    Article  Google Scholar 

  • Weidenberg K (1999) Vergleichende Untersuchugnen zum Paarungs- und Territorialverhalten von Rana ridibunda- und Rana kl. esculenta-Männchen. M.Sc. thesis, Humboldt-Universität, Berlin

  • Wells KD (1977) The social behaviour of anuran amphibians. Anim Behav 25:666–693

    Article  Google Scholar 

  • Wells KD (2007) The ecology and behavior of amphibians. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Westneat DF, Mays HL (2005) Tests of spatial and temporal factors influencing extra-pair paternity in red-winged blackbirds. Mol Ecol 14:2155–2167

    Article  CAS  PubMed  Google Scholar 

  • Woolbright LL, Greene EJ, Rapp GC (1990) Density-dependent mate searching strategies of male woodfrogs. Anim Behav 40:135–142

    Article  Google Scholar 

  • Zalesna A, Choleva L, Ogielska M, Rabova M, Marec F, Rab P (2011) Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization. Cytogenet Genome Res 134:206–212

    Article  CAS  PubMed  Google Scholar 

  • Zippin C (1958) The removal method of population estimation. J Wildl Manag 22:82–90

    Article  Google Scholar 

Download references

Acknowledgments

We greatly thank Irene Völlmy for her help in the field in Döbern and Genarp, Sandra Röthlisberger for her excellent lab work, and two anonymous reviewers for their helpful comments on the first version of the manuscript. Special thanks go to the pond owners, who kindly allowed us to roam in and around their ponds over several weeks—and sometimes even treated us with meals and drinks. The study was funded through the University of Zürich and a grant by the Swiss National Science Foundation to H-UR (no. 3100A0-120225/1).

Ethical standards

The experiments comply with the current laws of Sweden, Germany, and Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Ulrich Reyer.

Additional information

Communicated by M. Gibbons

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, A., Abt Tietje, G. & Reyer, HU. Spatial behavior in relation to mating systems: movement patterns, nearest-neighbor distances, and mating success in diploid and polyploid frog hybrids (Pelophylax esculentus). Behav Ecol Sociobiol 69, 501–517 (2015). https://doi.org/10.1007/s00265-014-1862-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-014-1862-0

Keywords

Navigation