Skip to main content

Advertisement

Log in

Early application of extracorporeal shock wave therapy improves pain control and functional scores in patients undergoing total knee arthroplasty: a randomized controlled trial

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The use of biophysical stimuli produced by extracorporeal shock wave therapy (ESWT) can improve the rehabilitation treatment of patients undergoing total knee arthroplasty (TKA). The aim of our study is to evaluate the short-term efficacy of early postoperative ESWT in combination with physiotherapy in terms of pain reduction and motor function recovery of patients undergoing TKA and compare it with conventional physiotherapy treatment.

Methods

Fifty-six patients undergoing TKA were enrolled in the study from January 2019 to February 2020. Patients received two sessions of physiotherapy daily, with (experimental group) or without (control group) four sessions of ESWT within seven days after surgery. Patients were prospectively evaluated at baseline and at post-operative day two and seven. Assessment included active knee range of motion (aROM), timed up and go (TUG) test, visual analogue scale (VAS) for pain, and Borg scale.

Results

Fifty patients completed the study. Both treatments proved to be effective in reducing pain and improving the knee range of motion and functional scores at seven days after surgery: the aROM in the ESWT group was 36.8 ± 11.0 grades (p < 0.001), while in control group was 19.8 ± 7.8 grades (p < 0.001). TUG, VAS, and BORG scores showed a similar trend. Comparative analysis revealed superior clinical results for the experimental group in all the outcomes, in particular aROM (96.0 ± 5.40 vs. 81.20 ± 11.01, p < 0.001) and TUG test (17.4 ± 5.61 vs. 21.24 ± 5.88, p < 0.001), at day seven after surgery.

Conclusion

Early application of ESWT in addition to physiotherapy can positively influence the rehabilitation process after TKA. The treatment proved to be well tolerated and safe. Preliminary results demonstrated better pain control and functional scores compared to physiotherapy alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available to the authors and will be granted only upon reasoned request, subject to the authors’ evaluation.

References

  1. Bijlsma JWJ, Berenbaum F, Lafeber FPJG (2011) Osteoarthritis: an update with relevance for clinical practice. Lancet Lond Engl 377(9783):2115–26. https://doi.org/10.1016/S0140-6736(11)60243-2

    Article  Google Scholar 

  2. Monticone M, Frigau L, Sconza C, Foti C, Mola F, Respizzi S (2019) Italian version of the risk assessment and prediction tool: properties and usefulness of a decision-making tool for subjects’ discharge after total hip and knee arthroplasty. Int J Stat Med Res 4(8):8–16. https://doi.org/10.6000/1929-6029.2019.08.02

    Article  Google Scholar 

  3. Bryan S, Goldsmith LJ, Davis JC, Hejazi S, MacDonald V, McAllister P, Randall E, Suryaprakash N, Wu AD, Sawatzky R (2018) Revisiting patient satisfaction following total knee arthroplasty: a longitudinal observational study. BMC Musculoskelet Disord 19(1):423. https://doi.org/10.1186/s12891-018-2340-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Monticone M, Sconza C, Portoghese I, Nishigami T, Wand BM, Sorrentino G et al (2021) Cross-cultural adaptation, reliability and validity of the Fremantle Knee Awareness Questionnaire in Italian subjects with painful knee osteoarthritis. Health Qual Life Outcomes 19(1):114. https://doi.org/10.1186/s12955-021-01754-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. König A, Walther M, Kirschner S, Gohlke F (2000) Balance sheets of knee and functional scores 5 years after total knee arthroplasty for osteoarthritis: a source for patient information. J Arthroplasty 15(3):289–294. https://doi.org/10.1016/s0883-5403(00)90532-1

    Article  PubMed  Google Scholar 

  6. Healthcare Cost and Utilization Project (HCUP). HCUP facts and figures: statistics on hospital-based care in the United States, 2009 [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US). http://www.ncbi.nlm.nih.gov/books/NBK91984/.  Accessed 2 June 2023

  7. Mandeville D, Osternig LR, Chou L-S (2008) The effect of total knee replacement surgery on gait stability. Gait Posture 27(1):103–109. https://doi.org/10.1016/j.gaitpost.2007.02.009

    Article  PubMed  Google Scholar 

  8. Wada M, Kawahara H, Shimada S, Miyazaki T, Baba H (2002) Joint proprioception before and after total knee arthroplasty. Clin Orthop 403:161–167. https://doi.org/10.1097/00003086-200210000-00024

    Article  Google Scholar 

  9. Mistry JB, Elmallah RDK, Bhave A, Chughtai M, Cherian JJ, McGinn T et al (2016) Rehabilitative guidelines after total knee arthroplasty: a review. J Knee Surg 29(3):201–217. https://doi.org/10.1055/s-0036-1579670

    Article  PubMed  Google Scholar 

  10. Domínguez-Navarro F, Igual-Camacho C, Silvestre-Muñoz A, Roig-Casasús S, Blasco JM (2018) Effects of balance and proprioceptive training on total hip and knee replacement rehabilitation: a systematic review and meta-analysis. Gait Posture 62:68–74. https://doi.org/10.1016/j.gaitpost.2018.03.003

    Article  PubMed  Google Scholar 

  11. Wainwright TW, Gill M, McDonald DA, Middleton RG, Reed M, Sahota O et al (2020) Consensus statement for perioperative care in total hip replacement and total knee replacement surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Acta Orthop 91(1):3–19. https://doi.org/10.1080/17453674.2019.1683790

    Article  PubMed  Google Scholar 

  12. Sconza C, Coletta F, Magarelli N, D’Agostino MC, Egan CG, Di Matteo B, Respizzi S, Mazziotti G (2022) Multimodal conservative treatment of migrating bone marrow edema associated with early osteonecrosis of the hip. SAGE Open Med Case Rep. 10:2050313X211067617. https://doi.org/10.1177/2050313X211067617

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moya D, Ramón S, Schaden W, Wang C-J, Guiloff L, Cheng J-H (2018) The role of extracorporeal shockwave treatment in musculoskeletal disorders. JBJS 100(3):251–63. https://doi.org/10.2106/JBJS.17.00661

    Article  Google Scholar 

  14. d’Agostino MC, Craig K, Tibalt E, Respizzi S (2015) Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg Lond Engl 24(Pt B):147–153. https://doi.org/10.1016/j.ijsu.2015.11.030

    Article  Google Scholar 

  15. Sukubo NG, Tibalt E, Respizzi S, Locati M, d’Agostino MC (2015) Effect of shock waves on macrophages: a possible role in tissue regeneration and remodeling. Int J Surg Lond Engl 24(Pt B):124–130. https://doi.org/10.1016/j.ijsu.2015.07.719

    Article  Google Scholar 

  16. Garibaldi R, Altomare D, Sconza C, Kon E, Castagna A, Marcacci M, Monina E, Di Matteo B (2021) Conservative management vs surgical repair in degenerative rotator cuff tears: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 25(2):609–619. https://doi.org/10.26355/eurrev_202101_24619

    Article  CAS  PubMed  Google Scholar 

  17. Sansone V, D’Agostino MC, Bonora C, Sizzano F, De Girolamo L, Romeo P (2012) Early angiogenic response to shock waves in a three-dimensional model of human microvascular endothelial cell culture (HMEC-1). J Biol Regul Homeost Agents 26(1):29–37

    CAS  PubMed  Google Scholar 

  18. Viganò M, Sansone V, d’Agostino MC, Romeo P, PeruccaOrfei C, de Girolamo L (2016) Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders. J Orthop Surg 11(1):163. https://doi.org/10.1186/s13018-016-0496-5

    Article  Google Scholar 

  19. Kisch T, Wuerfel W, Forstmeier V, Liodaki E, Stang FH, Knobloch K et al (2016) Repetitive shock wave therapy improves muscular microcirculation. J Surg Res 201(2):440–445. https://doi.org/10.1016/j.jss.2015.11.049

    Article  PubMed  Google Scholar 

  20. Wang B, Zhou J, Banie L, Reed-Maldonado AB, Ning H, Lu Z et al (2018) Low-intensity extracorporeal shock wave therapy promotes myogenesis through PERK/ATF4 pathway. Neurourol Urodyn 37(2):699–707. https://doi.org/10.1002/nau.23380

    Article  CAS  PubMed  Google Scholar 

  21. Notarnicola A, Covelli I, Maccagnano G, Marvulli R, Mastromauro L, Ianieri G et al (2018) Extracorporeal shockwave therapy on muscle tissue: the effects on healthy athletes. J Biol Regul Homeost Agents 32(1):185–193

    CAS  PubMed  Google Scholar 

  22. Auersperg V, Trieb K (2020) Extracorporeal shock wave therapy: an update. EFORT Open Rev 5(10):584–592. https://doi.org/10.1302/2058-5241.5.190067

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gatewood CT, Tran AA, Dragoo JL (2017) The efficacy of post-operative devices following knee arthroscopic surgery: a systematic review. Knee Surg Sports Traumatol Arthrosc 25(2):501–516. https://doi.org/10.1007/s00167-016-4326-4

    Article  PubMed  Google Scholar 

  24. Wang CJ, Ko JY, Chou WY, Hsu SL, Ko SF, Huang CC, Chang HW (2014) Shockwave therapy improves anterior cruciate ligament reconstruction. J Surg Res 188(1):110–118. https://doi.org/10.1016/j.jss.2014.01.050

    Article  PubMed  Google Scholar 

  25. Bade MJ, Kittelson JM, Kohrt WM, Stevens-Lapsley JE (2014) Predicting functional performance and range of motion outcomes after total knee arthroplasty. Am J Phys Med Rehabil 93(7):579–585. https://doi.org/10.1097/PHM.0000000000000065

    Article  PubMed  PubMed Central  Google Scholar 

  26. Podsiadlo D, Richardson S (1991) The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39(2):142–148. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x

    Article  CAS  PubMed  Google Scholar 

  27. Jensen MP, Chen C, Brugger AM (2003) Interpretation of visual analog scale ratings and change scores: a reanalysis of two clinical trials of postoperative pain. J Pain 4(7):407–414. https://doi.org/10.1016/s1526-5900(03)00716-8

    Article  PubMed  Google Scholar 

  28. Arena S (2017) Rate perceived exertion as a measure of exercise intensity. Home Healthc Now 35(10):570. https://doi.org/10.1097/NHH.0000000000000614

    Article  PubMed  Google Scholar 

  29. Ware JE, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30(6):473–83

    Article  PubMed  Google Scholar 

  30. Tasso F, Simili V, Di Matteo B, Monteleone G, Martorelli F, De Angelis A, D’Amato T, Bovio M, Altomare D, Campofreda G, Marcacci M, Scardino M (2022) A rapid recovery protocol for hip and knee replacement surgery: a report of the outcomes in a referral center. Eur Rev Med Pharmacol Sci 26(10):3648–3655. https://doi.org/10.26355/eurrev_202205_28860

    Article  CAS  PubMed  Google Scholar 

  31. Armitage P, Berry G, Matthews JNS (2002) Statistical methods in medical research, 4th edn. Blackwell, Oxford

    Book  Google Scholar 

  32. Gautschi OP, Stienen MN, Corniola MV, Joswig H, Schaller K, Hildebrandt G, Smoll NR (2017) Assessment of the minimum clinically important difference in the timed up and go test after surgery for lumbar degenerative disc disease. Neurosurgery 80(3):380–385. https://doi.org/10.1227/NEU.0000000000001320

    Article  PubMed  Google Scholar 

  33. Danoff JR, Goel R, Sutton R, Maltenfort MG, Austin MS (2018) How much pain is significant? Defining the minimal clinically important difference for the visual analog scale for pain after total joint arthroplasty. J Arthroplasty. 33(7S):S71-S75.e2. https://doi.org/10.1016/j.arth.2018.02.029

    Article  PubMed  Google Scholar 

  34. Park KB, Shin JS, Lee J, Lee YJ, Kim MR, Lee JH, Shin KM, Shin BC, Cho JH, Ha IH (2017) Minimum clinically important difference and substantial clinical benefit in pain, functional, and quality of life scales in failed back surgery syndrome patients. Spine (Phila Pa 1976) 42(8):E474–E481. https://doi.org/10.1097/BRS.0000000000001950

    Article  PubMed  Google Scholar 

  35. Tashjian RZ, Deloach J, Porucznik CA, Powell AP (2009) Minimal clinically important differences (MCID) and patient acceptable symptomatic state (PASS) for visual analog scales (VAS) measuring pain in patients treated for rotator cuff disease. J Shoulder Elbow Surg. 18(6):927–32. https://doi.org/10.1016/j.jse.2009.03.021

    Article  PubMed  Google Scholar 

  36. Maldonado DR, Kyin C, Owens JS, Rosinsky PJ, Jimenez AE, Lee MS, Domb BG (2022) Predictors of achieving the maximal outcome improvement threshold for willingness to undergo revision hip arthroscopy. Am J Sports Med 50(8):2174–2180. https://doi.org/10.1177/03635465221096872

    Article  PubMed  Google Scholar 

  37. Ries AL (2005) Minimally clinically important difference for the UCSD Shortness of Breath Questionnaire, Borg Scale, and Visual Analog Scale. COPD 2(1):105–110. https://doi.org/10.1081/copd-200050655

    Article  PubMed  Google Scholar 

  38. Escobar A, Quintana JM, Bilbao A, Aróstegui I, Lafuente I, Vidaurreta I (2007) Responsiveness and clinically important differences for the WOMAC and SF-36 after total knee replacement. Osteoarthritis Cartilage 15(3):273–280. https://doi.org/10.1016/j.joca.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  39. Ditton E, Johnson S, Hodyl N et al. (2020) Improving Patient outcomes following total knee arthroplasty: identifying rehabilitation pathways based on modifiable psychological risk and resilience factors. Front Psychol, 11:1061. Published 2020 May 29. https://doi.org/10.3389/fpsyg.2020.01061.

  40. Natali F, Corradini L, Sconza C, Taylor P, Furlan R, Mercer SW, Gatti R (2023) Development of the Italian version of the Consultation and Relational Empathy (CARE) measure: translation, internal reliability, and construct validity in patients undergoing rehabilitation after total hip and knee arthroplasty. Disabil Rehabil 45(4):703–708. https://doi.org/10.1080/09638288.2022.2037742

    Article  PubMed  Google Scholar 

  41. Simplicio CL, Purita J, Murrell W, Santos GS, Dos Santos RG, Lana JFSD (2020) Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma 11(Suppl 3):S309–S318. https://doi.org/10.1016/j.jcot.2020.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sconza C, Anzà M, Di Matteo B, Lipina M, Kon E, Respizzi S, Tibalt E, D’Agostino MC (2022) Extracorporeal shock wave therapy for the treatment of osteonecrosis and bone vascular diseases: a systematic review of randomized controlled trials. Eur Rev Med Pharmacol Sci 26(8):2949–2959. https://doi.org/10.26355/eurrev_202204_28626

    Article  CAS  PubMed  Google Scholar 

  43. Rice DA, McNair PJ (2010) Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum 40(3):250–266. https://doi.org/10.1016/j.semarthrit.2009.10.001

    Article  PubMed  Google Scholar 

  44. ISMST Guidelines: https://www.shockwavetherapy.org/fileadmin/user_upload/ISMST_Guidelines.pdf. Accessed 2 June 2023

Download references

Acknowledgements

We would also thank our colleagues at the Department of Biomedical Sciences-Humanitas University (Rozzano, Italy), for their feedback and support throughout the research process.

Author information

Authors and Affiliations

Authors

Contributions

DM and MDA contributed to the concept and design of the study and performed the procedures described. CS, BDM, and FS collected the data and drafted the first version of the manuscript. EM and SR performed the data analysis and the interpretation of the results. GL and EK made a substantial contribution to the revision of the content of the study and updated the literature. All authors read and approved the content of the paper.

Corresponding author

Correspondence to Cristiano Sconza.

Ethics declarations

Ethics approval

The Humanitas University Ethical Committee and Institutional Review Board approved the study protocol in the 24th July 2018 session with Authorization no. 2065.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The authors affirm that human research participants provided informed consent for publication of all the images included in the paper.

Competing interests

The authors have no conflicts of interest to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Daniele Martini and Cristiano Sconza contributed equally to the article and should be considered first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 146 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martini, D., Sconza, C., Di Matteo, B. et al. Early application of extracorporeal shock wave therapy improves pain control and functional scores in patients undergoing total knee arthroplasty: a randomized controlled trial. International Orthopaedics (SICOT) 47, 2757–2765 (2023). https://doi.org/10.1007/s00264-023-05906-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-023-05906-7

Keywords

Navigation