Skip to main content
Log in

Direct bone-to-bone integration between recombinant human bone morphogenetic protein-2-injected tendon graft and tunnel wall in an anterior cruciate ligament reconstruction model

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

This study was performed to evaluate one-stage anterior cruciate ligament (ACL) reconstruction using a semitendinosus tendon graft injected with bone morphogenetic protein 2 (BMP-2) in a rabbit model.

Methods

We injected recombinant human BMP-2 (rhBMP-2) in the experimental group and phosphate-buffered saline in the control group at two sites of the semitendinosus tendon (15 μg in each site) to replace tendon with bone in the bone tunnel. Twenty minutes later, the injected tendon graft was transplanted for ACL reconstruction by passing the graft through the bone tunnel. The animals were harvested at four, eight, or 12 weeks postoperatively and examined by histological and biomechanical methods.

Results

Histological analysis revealed that the tendon graft was replaced with new bone in the tunnel of the experimental group. Characteristic features identical to the regenerated direct insertion morphology at the bone–tendon junction were acquired at eight or 12 weeks in the experimental group. Biomechanical pull-out testing revealed greater stiffness in the experimental than control group at 12 weeks, although the maximum load to failure showed no significant difference between the two groups at four, eight, or 12 weeks.

Conclusion

These results indicate the potential for ACL reconstruction with regenerated direct insertion morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shino K, Nakata N, Toritsuka Y et al (2005) Anatomically oriented anterior cruciate ligament reconstruction with a bone-patellar tendon-bone graft via rectangular socket and tunnel: a snug-fit and impingement-free grafting technique. Arthroscopy 21(11):1402.e1–1402.e5

    Article  Google Scholar 

  2. Steiner ME, Hecker AT, Brown CH et al (1994) Anterior cruciate ligament graft fixation. Comparison of hamstring and patellar tendon grafts. Am J Sports Med 22(2):240–247

    Article  CAS  PubMed  Google Scholar 

  3. Tomita F, Yasuda K, Mikami S et al (2001) Comparisons of intraosseous graft healing between the double flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy 17:461–476

    Article  CAS  PubMed  Google Scholar 

  4. Beynnon BD, Johnson R, Fleming BC et al (2002) Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts. J Bone Joint Surg Am 84:1503–1513

    PubMed  Google Scholar 

  5. Shaieb MD, Kan DM, Chang SK et al (2002) A prospective randomized comparison of patellar tendon versus semitendinosus and gracilis tendon autografts for anterior cruciate ligament reconstruction. Am J Sports Med 30(2):214–220

    PubMed  Google Scholar 

  6. Feller JA, Webster KE et al (2003) A randomized comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction. Am J Sports Med 31:564–573

    PubMed  Google Scholar 

  7. Kartus J, Magnusson L, Stener S et al (1999) Complications following arthroscopic anterior cruciate ligament reconstruction. A 2-5-year follow-up of 604 patients with special emphasis on anterior knee pain. Knee Surg Sports Traumatol Arthrosc 7:2–8

    Article  CAS  PubMed  Google Scholar 

  8. Clatworthy MG, Annear P, Bulow JU et al (1999) Tunnel widening in anterior cruciate ligament reconstruction. A prospective evaluation of hamstring and patellar tendon grafts. Knee Surg Sports Traumatol Arthrosc 7:138–145

    Article  CAS  PubMed  Google Scholar 

  9. Leonardi ABA, Junior AD, Severino NR (2014) Bone tunnel enlargement on anterior cruciate ligament reconstruction. Acta Orthop Bras 22(5):240–4

    Article  Google Scholar 

  10. Hashimoto Y, Yoshida G, Toyoda H et al (2007) Generation of tendon-to-bone interface “Enthesis” with use of recombinant BMP-2 in a rabbit model. J Orthop Res 25:1415–1424

    Article  PubMed  Google Scholar 

  11. Hashimoto Y, Naka Y, Fukunaga K, et al. (2011) ACL reconstruction using bone-tendon-bone graft engineered from the semitendinosus tendon by injection of recombinant BMP-2 in a rabbit model. J Orthop Res: 1923–1930

  12. Ju YJ, Muneta T, Yoshimura H et al (2008) Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing. Cell Tissue Res 332:469–478

    Article  PubMed  Google Scholar 

  13. Lui PP-Y, Zhang P, Chan K-M et al (2010) Biology and augmentation of tendon-bone insertion repair. J Orthop Sur Res 5(59):1–14

    Google Scholar 

  14. Yamazaki S, Yasuda K, Tomita F et al (2005) The effect of transforming growth factor-β1 on intraosseous healing of flexor tendon autograft replacement of anterior cruciate ligament in dogs. Arthroscopy 21(9):1034–1041

    Article  PubMed  Google Scholar 

  15. Demirag B, Sarisozen B, Ozer O et al (2005) Enhancement of tendon-bone healing of anterior cruciate ligament grafts by blockage of matrix metalloproteinases. J Bone Joint Surg Am 87(11):2401–2410

    Article  PubMed  Google Scholar 

  16. Walsh WR, Stephens P, Vizesi F et al (2007) Effects of low-intensity pulsed ultrasound on tendon-bone healing in an intra-articular sheep knee model. Arthroscopy 23(2):197–204

    Article  PubMed  Google Scholar 

  17. Martinek V, Latterman C, Usas A et al (2002) Enhancement of tendon-bone integration of anteriror cruciate ligament grafts with bone morphogenetic protein-2 gene transfer. J Bone Joint Surg Am 84-A:1123–1131

    PubMed  Google Scholar 

  18. Pecina M, Vukicevic S (2007) Biological aspects of bone, cartilage and tendon regeneration. Int Orthop 31:719–720

    Article  PubMed Central  PubMed  Google Scholar 

  19. Rodeo SA, Suzuki K, Deng X-h et al (1999) Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports Med 27(4):476–488

    CAS  PubMed  Google Scholar 

  20. Ma CB, Kawamura S, Deng X-H et al (2007) Bone morphogenetic proteins-signaling plays a role in tendon-to-bone healing. Am J Sprots Med 35:597–604

    Article  Google Scholar 

  21. Brucker PU, Lorenz S, Imhoff AB (2006) Aperture fixation in arthroscopic anterior cruciate ligament double-bundle reconstruction. Arthroscopy 22(11):1250e, 6

    Article  Google Scholar 

  22. Fu FH, Bennett CH, Ma CB et al (2000) Current trends in anterior cruciate ligament reconstruction. Part II. Operative procedures and clinical correlations. Am J Sports Med 28(1):124–130

    CAS  PubMed  Google Scholar 

  23. L’Insalata JC, Klatt B, Fu FH et al (1997) Tunnel expansion following anterior cruciate ligament reconstruction: a comparison of hamstring and patellar tendon autografts. Knee Surg Sports Traumatol Arthrosc 5:234–238

    Article  PubMed  Google Scholar 

  24. Mihelic R, Pecina M, Jelic M et al (2004) Bone Morphogenetic protein-7 (Osteogenic protein-1) promotes tendon graft integration in anterior cruciate ligament reconstruction in sheep. Am J Sprots Med 32(7):1619–1625

    Article  Google Scholar 

  25. Ishibashi Y, Rudy TW, Livesay GA et al (1997) The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy 13(2):177–182

    Article  CAS  PubMed  Google Scholar 

  26. Woo S-LY, Hollis M, Adams DJ et al (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19(3):217–225

    Article  CAS  PubMed  Google Scholar 

  27. Kaito T, Johnson J, Ellerman J et al (2013) Synergistic effect of bone morphogenetic proteins 2 and 7 by ex vivo gene therapy in a rat spinal fusion model. J Bone Joint Surg Am 95-A:1612–1619

    Article  Google Scholar 

  28. Doi Y, Miyazaki M, Yoshiiwa T et al (2011) Manipulation of the anabolic and catabolic responses with BMP-2 and zoledronic acid in a rat femoral fracture model. Bone 49:777–782

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Osteopharma Inc. for kindly providing rhBMP. This work was supported by JSPS KAKENHI Grant Number 23791654.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Hashimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takigami, J., Hashimoto, Y., Yamasaki, S. et al. Direct bone-to-bone integration between recombinant human bone morphogenetic protein-2-injected tendon graft and tunnel wall in an anterior cruciate ligament reconstruction model. International Orthopaedics (SICOT) 39, 1441–1447 (2015). https://doi.org/10.1007/s00264-015-2774-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2774-y

Keywords

Navigation