Skip to main content

Advertisement

Log in

Cholesterol induction in CD8+ T cell exhaustion in colorectal cancer via the regulation of endoplasmic reticulum-mitochondria contact sites

  • Brief Report
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Hypercholesterolemia is one of the risk factors for colorectal cancer (CRC). Cholesterol can participate in the regulation of human T cell function and affect the occurrence and development of CRC.

Objective

To elucidate the pathogenesis of CRC immune escape mediated by CD8+ T cell exhaustion induced by cholesterol.

Methods

CRC samples (n = 217) and healthy individuals (n = 98) were recruited to analyze the relationship between peripheral blood cholesterol levels and the clinical features of CRC. An animal model of CRC with hypercholesterolemia was established. Intraperitoneal intervention with endoplasmic reticulum stress (ERS) inhibitors in hypercholesterolemic CRC mice was performed. CD69, PD1, TIM-3, and CTLA-4 on CD8+ T cells of spleens from C57BL/6 J mice were detected by flow cytometry. CD8+ T cells were cocultured with MC38 cells (mouse colon cancer cell line). The proliferation, apoptosis, migration and invasive ability of MC38 cells were detected by CCK-8 assay, Annexin-V APC/7-AAD double staining, scratch assay and transwell assay, respectively. Transmission electron microscopy was used to observe the ER structure of CD8+ T cells. Western blotting was used to detect the expression of ERS and mitophagy-related proteins. Mitochondrial function and energy metabolism were measured. Immunoprecipitation was used to detect the interaction of endoplasmic reticulum-mitochondria contact site (ERMC) proteins. Immunofluorescence colocalization was used to detect the expression and intracellular localization of ERMC-related molecules.

Results

Peripheral blood cholesterol-related indices, including Tc, low density lipoproteins (LDL) and Apo(a), were all increased, and high density lipoprotein (HDL) was decreased in CRCs. The proliferation, migration and invasion abilities of MC38 cells were enhanced, and the proportion of tumor cell apoptosis was decreased in the high cholesterol group. The expression of IL-2 and TNF-α was decreased, while IFN-γ was increased in the high cholesterol group. It indicated high cholesterol could induce exhaustion of CD8+ T cells, leading to CRC immune escape. Hypercholesterolemia damaged the ER structure of CD8+ T cells and increased the expression of ER stress molecules (CHOP and GRP78), lead to CD8+ T cell exhaustion. The expression of mitophagy-related proteins (BNIP3, PINK and Parkin) in exhausted CD8+ T cells increased at high cholesterol levels, causing mitochondrial energy disturbance. High cholesterol enhanced the colocalization of Fis1/Bap31, MFN2/cox4/HSP90B1, VAPB/PTPIP51, VDAC1/IPR3/GRP75 in ERMCs, indicated that high cholesterol promoted the intermolecular interaction between ER and mitochondrial membranes in CD8+ T cells.

Conclusion

High cholesterol regulated the ERS-ERMC-mitophagy axis to induce the exhaustion of CD8+ T cells in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

CTLs:

Cytotoxic T lymphocytes

DCA:

Deoxycholic acid

Dvl:

Dishevelled

ERMCs:

Endoplasmic reticulum-mitochondria contact sites

ERS:

Endoplasmic reticulum stress

HDL-C:

High‐density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

LDLR:

Low-density lipoprotein receptor

LXRs:

Liver X receptors

MACS:

Magnetic cell separation

MMP:

Mitochondrial membrane potential

NHL:

Non-Hodgkin lymphoma

OCR:

Oxygen consumption rate

SREBP2:

Sterol regulatory element-binding protein 2

SQLE:

Squalene epoxidase

TCR:

T-cell receptor

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33

    Article  PubMed  Google Scholar 

  2. Zhang L, Cao F, Zhang G, Shi L, Chen S, Zhang Z, Zhi W, Ma T (2019) Trends in and predictions of colorectal cancer incidence and mortality in China From 1990 to 2025. Front Oncol 9:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jun SY, Brown AJ, Chua NK, Yoon JY, Lee JJ, Yang JO, Jang I, Jeon SJ, Choi TI, Kim CH et al (2021) Reduction of squalene epoxidase by cholesterol accumulation accelerates colorectal cancer progression and metastasis. Gastroenterology 160(4):1194-1207.e1128

    Article  CAS  PubMed  Google Scholar 

  4. Cornish AJ, Law PJ, Timofeeva M, Palin K, Farrington SM, Palles C, Jenkins MA, Casey G, Brenner H, Chang-Claude J et al (2020) Modifiable pathways for colorectal cancer: a mendelian randomisation analysis. Lancet Gastroenterol Hepatol 5(1):55–62

    Article  PubMed  Google Scholar 

  5. Wang Y, Sun XQ, Lin HC, Wang DS, Wang ZQ, Shao Q, Wang FH, Yan SM, Liang JY, Zeng ZL et al (2019) Correlation between immune signature and high-density lipoprotein cholesterol level in stage II/III colorectal cancer. Cancer Med 8(3):1209–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mayengbam SS, Singh A, Pillai AD, Bhat MK (2021) Influence of cholesterol on cancer progression and therapy. Transl Oncol 14(6):101043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tanaka T, Oyama T, Sugie S, Shimizu M (2016) Different susceptibilities between Apoe- and Ldlr-deficient mice to inflammation-associated colorectal carcinogenesis. Int J Mol Sci 17(11):1806

  8. Barbera NA, Minke B, Levitan I (2019) Comparative docking analysis of cholesterol analogs to ion channels to discriminate between stereospecific binding vs. stereospecific response. Channels (Austin) 13(1):136–146

    Article  PubMed  Google Scholar 

  9. Narwal V, Deswal R, Batra B, Kalra V, Hooda R, Sharma M, Rana JS (2019) Cholesterol biosensors: a review. Steroids 143:6–17

    Article  CAS  PubMed  Google Scholar 

  10. Luo J, Yang H, Song BL (2020) Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 21(4):225–245

    Article  CAS  PubMed  Google Scholar 

  11. Hu J, La Vecchia C, de Groh M, Negri E, Morrison H, Mery L (2012) Dietary cholesterol intake and cancer. Ann Oncol 23(2):491–500

    Article  CAS  PubMed  Google Scholar 

  12. Zhang KL, Zhu WW, Wang SH, Gao C, Pan JJ, Du ZG, Lu L, Jia HL, Dong QZ, Chen JH et al (2021) Organ-specific cholesterol metabolic aberration fuels liver metastasis of colorectal cancer. Theranostics 11(13):6560–6572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sheng R, Kim H, Lee H, Xin Y, Chen Y, Tian W, Cui Y, Choi JC, Doh J, Han JK et al (2014) Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat Commun 5:4393

    Article  CAS  PubMed  Google Scholar 

  14. He L, Li H, Pan C, Hua Y, Peng J, Zhou Z, Zhao Y, Lin M (2021) Squalene epoxidase promotes colorectal cancer cell proliferation through accumulating calcitriol and activating CYP24A1-mediated MAPK signaling. Cancer Commun (Lond) 41(8):726–746

    Article  PubMed  Google Scholar 

  15. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12(10):661–672

    Article  CAS  PubMed  Google Scholar 

  16. Li C, Wang Y, Liu D, Wong CC, Coker OO, Zhang X, Liu C, Zhou Y, Liu Y, Kang W et al (2022) Squalene epoxidase drives cancer cell proliferation and promotes gut dysbiosis to accelerate colorectal carcinogenesis. Gut 71:2253–2265

    Article  CAS  PubMed  Google Scholar 

  17. Cao H, Xu M, Dong W, Deng B, Wang S, Zhang Y, Wang S, Luo S, Wang W, Qi Y et al (2017) Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int J Cancer 140(11):2545–2556

    Article  CAS  PubMed  Google Scholar 

  18. Lucken-Ardjomande S, Montessuit S, Martinou JC (2008) Bax activation and stress-induced apoptosis delayed by the accumulation of cholesterol in mitochondrial membranes. Cell Death Differ 15(3):484–493

    Article  CAS  PubMed  Google Scholar 

  19. Spann NJ, Glass CK (2013) Sterols and oxysterols in immune cell function. Nat Immunol 14(9):893–900

    Article  CAS  PubMed  Google Scholar 

  20. Traversari C, Sozzani S, Steffensen KR, Russo V (2014) LXR-dependent and -independent effects of oxysterols on immunity and tumor growth. Eur J Immunol 44(7):1896–1903

    Article  CAS  PubMed  Google Scholar 

  21. Yuan J, Cai T, Zheng X, Ren Y, Qi J, Lu X, Chen H, Lin H, Chen Z, Liu M et al (2021) Potentiating CD8(+) T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling. Protein Cell 12(4):240–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M, Suzuki Y, Shintaku I, Nagura H, Ohtani H (2001) Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res 61(13):5132–5136

    CAS  PubMed  Google Scholar 

  23. Wu W, Shi X, Xu C (2016) Regulation of T cell signalling by membrane lipids. Nat Rev Immunol 16(11):690–701

    Article  CAS  PubMed  Google Scholar 

  24. Li M, Yang Y, Wei J, Cun X, Lu Z, Qiu Y, Zhang Z, He Q (2018) Enhanced chemo-immunotherapy against melanoma by inhibition of cholesterol esterification in CD8(+) T cells. Nanomedicine 14(8):2541–2550

    Article  CAS  PubMed  Google Scholar 

  25. Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X, Meng X, Li L, Wang J, Xu C et al (2016) Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 531(7596):651–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma X, Bi E, Lu Y, Su P, Huang C, Liu L, Wang Q, Yang M, Kalady MF, Qian J et al (2019) Cholesterol induces CD8(+) T cell exhaustion in the tumor microenvironment. Cell Metab 30(1):143-156.e145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang X, Qi Q, Pan Y, Zhou Q, Wu Y, Zhuang J, Xu J, Pan M, Han S (2020) Single-cell analysis reveals characterization of infiltrating t cells in moderately differentiated colorectal cancer. Front Immunol 11:620196

    Article  CAS  PubMed  Google Scholar 

  28. Dong L, Yang X, Wang Y, Jin Y, Zhou Q, Chen G, Han S (2021) Key markers involved in the anticolon cancer response of cd8+ t cells through the regulation of cholesterol metabolism. J Oncol 2021:9398661

    Article  PubMed  PubMed Central  Google Scholar 

  29. Weiser MR (2018) AJCC 8th edition: colorectal cancer. Ann Surg Oncol 25(6):1454–1455. https://doi.org/10.1245/s10434-018-6462-1

    Article  PubMed  Google Scholar 

  30. Schlimmer N, Kratz M, Böhm M, Baumhäkel M (2011) Telmisartan, ramipril and their combination improve endothelial function in different tissues in a murine model of cholesterol-induced atherosclerosis. Br J Pharmacol 163(4):804–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ikeda SI, Kurihara T, Jiang X, Miwa Y, Lee D, Serizawa N, Jeong H, Mori K, Katada Y, Kunimi H et al (2022) Scleral PERK and ATF6 as targets of myopic axial elongation of mouse eyes. Nat Commun 13(1):5859

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kurien BT, Scofield RH (2006) Western blotting. Methods 38(4):283–293

    Article  CAS  PubMed  Google Scholar 

  33. Wu Y, Li Q, Chen XZ (2007) Detecting protein-protein interactions by Far western blotting. Nat Protoc 2(12):3278–3284

    Article  CAS  PubMed  Google Scholar 

  34. Xi Y, Yani Z, Jing M, Yinhang W, Xiaohui H, Jing Z, Quan Q, Shuwen H (2021) Mechanisms of induction of tumors by cholesterol and potential therapeutic prospects. Biomed Pharmacother 144:112277

    Article  CAS  PubMed  Google Scholar 

  35. Eftekhari A, Ahmadian E, Salatin S, Sharifi S, Dizaj SM, Khalilov R, Hasanzadeh M (2019) Current analytical approaches in diagnosis of melanoma. Trac Trends Anal Chem 116:122–135

    Article  CAS  Google Scholar 

  36. Li D, Li Y, Hernandez JA, Patenia R, Kim TK, Khalili J, Dougherty MC, Hanley PJ, Bollard CM, Komanduri KV et al (2010) Lovastatin inhibits T-cell proliferation while preserving the cytolytic function of EBV, CMV, and MART-1-specific CTLs. J Immunother 33(9):975–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Overton ET, Sterrett S, Westfall AO, Kahan SM, Burkholder G, Zajac AJ, Goepfert PA, Bansal A (2014) Effects of atorvastatin and pravastatin on immune activation and T-cell function in antiretroviral therapy-suppressed HIV-1-infected patients. AIDS 28(17):2627–2631

    Article  CAS  PubMed  Google Scholar 

  38. Chern YJ, Wong JCT, Cheng GSW, Yu A, Yin Y, Schaeffer DF, Kennecke HF, Morin G, Tai IT (2019) The interaction between SPARC and GRP78 interferes with ER stress signaling and potentiates apoptosis via PERK/eIF2α and IRE1α/XBP-1 in colorectal cancer. Cell Death Dis 10(7):504

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  Google Scholar 

  40. Sozen E, Ozer NK (2017) Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: an updated mini-review. Redox Biol 12:456–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou J, Werstuck GH, Lhoták S, de Koning AB, Sood SK, Hossain GS, Møller J, Ritskes-Hoitinga M, Falk E, Dayal S et al (2004) Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice. Circulation 110(2):207–213

    Article  CAS  PubMed  Google Scholar 

  42. Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K, Asada Y, Okada K, Ishibashi-Ueda H, Gabbiani G et al (2007) Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 116(11):1226–1233

    Article  PubMed  Google Scholar 

  43. Hurst KE, Lawrence KA, Essman MT, Walton ZJ, Leddy LR, Thaxton JE (2019) Endoplasmic reticulum stress contributes to mitochondrial exhaustion of CD8(+) T cells. Cancer Immunol Res 7(3):476–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cao Y, Trillo-Tinoco J, Sierra RA, Anadon C, Dai W, Mohamed E, Cen L, Costich TL, Magliocco A, Marchion D et al (2019) ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun 10(1):1280

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee BR, Chang SY, Hong EH, Kwon BE, Kim HM, Kim YJ, Lee J, Cho HJ, Cheon JH, Ko HJ (2014) Elevated endoplasmic reticulum stress reinforced immunosuppression in the tumor microenvironment via myeloid-derived suppressor cells. Oncotarget 5(23):12331–12345

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chodari L, Dilsiz Aytemir M, Vahedi P, Alipour M, Vahed SZ, Khatibi SMH, Ahmadian E, Ardalan M, Eftekhari A (2021) Targeting mitochondrial biogenesis with polyphenol compounds. Oxid Med Cell Longev 2021:4946711

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lebeau J, Saunders JM, Moraes VWR, Madhavan A, Madrazo N, Anthony MC, Wiseman RL (2018) The PERK arm of the unfolded protein response regulates mitochondrial morphology during acute endoplasmic reticulum stress. Cell Rep 22(11):2827–2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bouman L, Schlierf A, Lutz AK, Shan J, Deinlein A, Kast J, Galehdar Z, Palmisano V, Patenge N, Berg D et al (2011) Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ 18(5):769–782

    Article  CAS  PubMed  Google Scholar 

  49. Killackey SA, Philpott DJ, Girardin SE (2020) Mitophagy pathways in health and disease. J Cell Biol 219(11):e202004029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Palikaras K, Lionaki E, Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20(9):1013–1022

    Article  CAS  PubMed  Google Scholar 

  51. Yoo SM, Jung YK (2018) A molecular approach to mitophagy and mitochondrial dynamics. Mol Cells 41(1):18–26

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fan Y, Simmen T (2019) Mechanistic connections between endoplasmic reticulum (ER) redox control and mitochondrial metabolism. Cells 8(9):1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Namgaladze D, Khodzhaeva V, Brüne B (2019) ER-mitochondria communication in cells of the innate immune system. Cells 8(9):1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang N, Wang C, Zhao H, He Y, Lan B, Sun L, Gao Y (2021) The MAMs structure and its role in cell death. Cells 10(3):657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Namba T (2019) BAP31 regulates mitochondrial function via interaction with Tom40 within ER-mitochondria contact sites. Sci Adv 5(6):eaaw1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Giamogante F, Barazzuol L, Brini M, Calì T (2020) ER-mitochondria contact sites reporters: strengths and weaknesses of the available approaches. Int J Mol Sci 21(21):8157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu R, Jin SB, Lendahl U, Nistér M, Zhao J (2019) Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. Embo j 38(8):e99748

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hu Y, Chen H, Zhang L, Lin X, Li X, Zhuang H, Fan H, Meng T, He Z, Huang H et al (2021) The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy 17(5):1142–1156

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Public Welfare Technology Application Research Program of Huzhou (No.2021GY05), Medical and Health Technology Project of Zhejiang Province (No.2022KY1220, No.2021KY343) and Zhejiang Provincial Natural Science Foundation (No. LQ23H160006).

Author information

Authors and Affiliations

Authors

Contributions

YX and HS conceived of the study. YX and WY wrote the manuscript. YQ and LJ performed the experiments. ZJ drew the figures. QQ, JY and JY analyzed the data. All authors read and approved the paper.

Corresponding author

Correspondence to Yang Xi.

Ethics declarations

Conflict of interests

The authors declare that no conflicts of interest exist.

Ethical approval and consent to participate

Healthy individuals and CRC samples at Huzhou Central Hospital from January 2019 to December 2020 were recruited for this study. This study was approved by the Ethics Committee of Huzhou Central Hospital (No. 20191101-02).

Consent for publication

All patients volunteered to participate in the study and signed a written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

262_2023_3555_MOESM1_ESM.tif

Mitochondrial dysfunction in high cholesterol-induced exhausted CD8+ T cells. A, workflow of this part. B, mitochondrial function indices of CD8+ T cells in the normal cholesterol group, high cholesterol group, normal cholesterol colorectal cancer group, and high cholesterol colorectal cancer group: Mitochondrial membrane potential, ATP content, OCR value (cell oxygen respiration O2 consumption rate), ROS relative content, acetyl coenzyme A, NADH/NAD + , and mitochondrial free calcium. C, CD8+ T cells in the high-cholesterol colorectal cancer group were saved by ADP. Comparison of changes in the following mitochondrial functional indicators: mitochondrial membrane potential, ATP content, OCR value (O2 consumption rate in cell aerobic respiration), ROS relative content, acetyl coenzyme A, and NADH/NAD + . D, CD8+ T cells in the high-cholesterol colorectal cancer group were treated with ADP for energy rescue. Flow cytometry was used to detect the expression of the irritant receptor CD69 and inhibitory receptors PD-1, CTLA-4 and TIM- in CD8+ T cells before and after energy rescue. E, the expression levels of the mitophagy-related proteins BINP3, PINK1 and Parkin in CD8+ T cells from mice in the normal cholesterol group, high cholesterol group, normal cholesterol colorectal cancer group and high cholesterol CRC group significantly differed. * indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001 (TIF 3171 KB)

Workflow of the study (TIF 4176 KB)

Supplementary file3 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuwen, H., Yinhang, W., Jing, Z. et al. Cholesterol induction in CD8+ T cell exhaustion in colorectal cancer via the regulation of endoplasmic reticulum-mitochondria contact sites. Cancer Immunol Immunother 72, 4441–4456 (2023). https://doi.org/10.1007/s00262-023-03555-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03555-8

Keywords

Navigation