Skip to main content
Log in

Combination of magnetic hyperthermia and immunomodulators to drive complete tumor regression of poorly immunogenic melanoma

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Hyperthermia using magnetic nanoparticles enables tumor-specific heating and can destroy tumor tissues. This approach works as in situ vaccination with tumor antigens released from dying tumor cells. However, in situ vaccination caused by magnetic hyperthermia is often insufficient to induce complete regression of poorly immunogenic tumors surrounded by an immunosuppressive microenvironment. In this study, we explored a novel strategy for immunotherapy using magnetic hyperthermia to regress poorly immunogenic melanoma. Magnetic hyperthermia induced tumor cell death in a B16-F10 melanoma mouse model. After hyperthermia treatment, we found elevated levels of HMGB1, which is known to be released from dying cells to promote inflammation, and the proinflammatory cytokine TNF-α was increased in serum of the mice. Systemic administration of glycyrrhizin, an HMGB1 inhibitor, reduced the levels of TNF-α in serum and successfully delayed the regrowth of tumors after magnetic hyperthermia. To achieve complete tumor regression, TLR9 activation by intratumor injection of CpG was combined with systemic administration of anti-PD-1 antibody and anti-CTLA-4 antibody. The combination therapy of magnetic hyperthermia at 46°C with the immunomodulators (glycyrrhizin+CpG+anti-PD-1+anti-CTLA-4) achieved complete tumor regression in 80% of growing 5-mm B16-F10 tumors. These findings have important implications for the development of novel cancer immunotherapy using magnetic hyperthermia for poorly immunogenic tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

αPD1:

Anti-PD-1 antibody

αCTLA4:

Anti-CTLA-4 antibody

AMF:

Alternating magnetic field

CTLA-4:

Cytotoxic T lymphocyte-associated protein-4

DAMP:

Damage-associated molecular pattern

FBS:

Fetal bovine serum

HSP:

Heat shock protein

MCL:

Magnetite cationic liposome

MDSC:

Myeloid-derived suppressor cell

PD-1:

Programmed death-1

PD-L1:

Programed death-ligand 1

pDC:

Plasmacytoid dendritic cell

RAGE:

Receptor for advanced glycation end products

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-α

References

  1. Liu X, Zhang Y, Wang Y, Zhu W, Li G, Ma X, Zhang Y, Chen S, Tiwari S, Shi K, Zhang S, Fan HM, Zhao YX, Liang XJ (2020) Comprehensive understanding of magnetic\hyperthermia for improving antitumor therapeutic efficacy. Theranostics 10(8):3793–3815. https://doi.org/10.7150/thno.40805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100(1):1–11. https://doi.org/10.1263/jbb.100.1

    Article  CAS  PubMed  Google Scholar 

  3. Shinkai M, Yanase M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1996) Intracellular hyperthermia for cancer using magnetite cationic liposome: in vitro study. Jpn J Cancer Res 87:1179. https://doi.org/10.1111/j.1349-7006.1996.tb03129.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dennis CL, Ivkov R (2013) Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperth 29(8):715–729. https://doi.org/10.3109/02656736.2013.836758

    Article  Google Scholar 

  5. Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T (2003) Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng 96(4):364–369. https://doi.org/10.1016/S1389-1723(03)90138-1

    Article  CAS  PubMed  Google Scholar 

  6. Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1998) Intracellular hyperthermia for cancer using magnetite cationic liposome: an in vivo study. Jpn J Cancer Res 89:463. https://doi.org/10.1111/j.1349-7006.1998.tb00586.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawai N, Ito A, Nakahara Y, Honda H, Kobayashi T, Futakuchi M, Shirai T, Tozawa K, Kohri K (2006) Complete regression of experimental prostate cancer in nude mice by repeated hyperthermia using magnetite cationic liposomes and a newly developed solenoid containing a ferrite core. Prostate 66(7):718–727. https://doi.org/10.1002/pros.20394

    Article  CAS  PubMed  Google Scholar 

  8. Ito A, Shinkai M, Honda H, Yoshikawa K, Saga S, Wakabayashi T, Yoshida J, Kobayashi T (2003) Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles. Cancer Immunol Immunother 52(2):80–88. https://doi.org/10.1007/s00262-002-0335-x

    Article  CAS  PubMed  Google Scholar 

  9. Ito A, Honda H, Kobayashi T (2006) Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol Immunother 55(3):320–328. https://doi.org/10.1007/s00262-005-0049-y

    Article  CAS  PubMed  Google Scholar 

  10. Tamura Y, Ito A, Wakamatsu K, Kamiya T, Torigoe T, Honda H, Yamashita T, Uhara H, Ito S, Jimbow K (2022) Immunomodulation of melanoma by chemo-thermo-immunotherapy using conjugates of melanogenesis substrate NPrCAP and magnetite nanoparticles: a review. Int J Mol Sci 23(12):6457. https://doi.org/10.3390/ijms23126457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rubartelli A, Lotze MT (2007) Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 28(10):429–436. https://doi.org/10.1016/j.it.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  12. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388. https://doi.org/10.1146/annurev.immunol.021908.132603

    Article  CAS  PubMed  Google Scholar 

  13. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894):191–195. https://doi.org/10.1038/nature00858

    Article  CAS  PubMed  Google Scholar 

  14. Schlueter C, Weber H, Meyer B, Rogalla P, Röser K, Hauke S, Bullerdiek J (2005) Angiogenetic signaling through hypoxia—HMGB1: an angiogenetic switch molecule. Am J Pathol 166(4):1259–1263. https://doi.org/10.1016/S0002-9440(10)62344-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8(9):1069–1086. https://doi.org/10.1158/2159-8290.CD-18-0367

    Article  PubMed  Google Scholar 

  16. Sharma P, Siddiqui BA, Anandhan S, Yadav SS, Subudhi SK, Gao J, Goswami S, Allison JP (2021) The next decade of immune checkpoint therapy. Cancer Discov 11(4):838–857. https://doi.org/10.1158/2159-8290.CD-20-1680

    Article  CAS  PubMed  Google Scholar 

  17. Popovic A, Jaffee EM, Zaidi N (2018) Emerging strategies for combination checkpoint modulators in cancer immunotherapy. J Clin Invest 128(8):3209–3218. https://doi.org/10.1172/JCI120775

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lu H (2014) TLR agonists for cancer immunotherapy: tipping the balance between the immune stimulatory and inhibitory effects. Front Immunol 3(5):83. https://doi.org/10.3389/fimmu.2014.00083

    Article  CAS  Google Scholar 

  19. Vollmer J, Krieg AM (2009) Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 61(3):195–204. https://doi.org/10.1016/j.addr.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  20. Zoglmeier C, Bauer H, Noerenberg D, Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S, Bourquin C (2011) CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res 17(7):1765–1775. https://doi.org/10.1158/1078-0432.CCR-10-2672

    Article  CAS  PubMed  Google Scholar 

  21. Reilley MJ, Morrow B, Ager CR, Liu A, Hong DS, Curran MA (2019) TLR9 activation cooperates with T cell checkpoint blockade to regress poorly immunogenic melanoma. J Immunother Cancer 7(1):323. https://doi.org/10.1186/s40425-019-0811-x

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mollica L, De Marchis F, Spitaleri A, Dallacosta C, Pennacchini D, Zamai M, Agresti A, Trisciuoglio L, Musco G, Bianchi ME (2007) Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol 14(4):431–441. https://doi.org/10.1016/j.chembiol.2007.03.007

    Article  CAS  PubMed  Google Scholar 

  23. Ito A, Ino K, Kobayashi T, Honda H (2005) The effect of RGD peptide-conjugated magnetite cationic liposomes on cell growth and cell sheet harvesting. Biomaterials 26(31):6185–6193. https://doi.org/10.1016/j.biomaterials.2005.03.039

    Article  CAS  PubMed  Google Scholar 

  24. Sato A, Tamura Y, Sato N, Yamashita T, Takada T, Sato M, Osai Y, Okura M, Ono I, Ito A, Honda H, Wakamatsu K, Ito S, Jimbow K (2010) Melanoma-targeted chemo-thermo-immuno (CTI)-therapy using N-propionyl-4-S-cysteaminylphenol-magnetite nanoparticles elicits CTL response via heat shock protein-peptide complex release. Cancer Sci 101(9):1939–1946. https://doi.org/10.1111/j.1349-7006.2010.01623.x

    Article  CAS  PubMed  Google Scholar 

  25. Oberg HH, Peters C, Kabelitz D, Wesch D (2020) Real-time cell analysis (RTCA) to measure killer cell activity against adherent tumor cells in vitro. Methods Enzymol 631:429–441

    Article  CAS  PubMed  Google Scholar 

  26. Aruga A, Aruga E, Chang AE (1997) Reduced efficacy of allogeneic versus syngeneic fibroblasts modified to secrete cytokines as a tumor vaccine adjuvant. Cancer Res 57(15):3230–3237

    CAS  PubMed  Google Scholar 

  27. Munakata L, Tanimoto Y, Osa A, Meng J, Haseda Y, Naito Y, Machiyama H, Kumanogoh A, Omata D, Maruyama K, Yoshioka Y, Okada Y, Koyama S, Suzuki R, Aoshi T (2019) Lipid nanoparticles of Type-A CpG D35 suppress tumor growth by changing tumor immune-microenvironment and activate CD8 T cells in mice. J Control Release 313:106–119. https://doi.org/10.1016/j.jconrel.2019.09.011

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed A, Tait SWG (2020) Targeting immunogenic cell death in cancer. Mol Oncol 14(12):2994–3006. https://doi.org/10.1002/1878-0261.12851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parker KH, Sinha P, Horn LA, Clements VK, Yang H, Li J, Tracey KJ, Ostrand-Rosenberg S (2014) HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res 74(20):5723–5733. https://doi.org/10.1158/0008-5472.CAN-13-2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garbe C, Eigentler TK, Keilholz U, Hauschild A, Kirkwood JM (2011) Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist 16(1):5–24. https://doi.org/10.1634/theoncologist.2010-0190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J, Dummer R, Ferrucci PF, Smylie M, Hogg D, Hill A, Márquez-Rodas I, Haanen J, Guidoboni M, Maio M, Schöffski P, Carlino MS, Lebbé C, McArthur G, Ascierto PA, Daniels GA, Long GV, Bastholt L, Rizzo JI, Balogh A, Moshyk A, Hodi FS, Wolchok JD (2019) Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. New Engl J Med 381(16):1535–1546

    Article  CAS  PubMed  Google Scholar 

  32. Teng MW, Ngiow SF, Ribas A, Smyth MJ (2015) Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res 75(11):2139–2145. https://doi.org/10.1158/0008-5472.CAN-15-0255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ito A, Yamaguchi M, Okamoto N, Sanematsu Y, Kawabe Y, Wakamatsu K, Ito S, Honda H, Kobayashi T, Nakayama E, Tamura Y, Okura M, Yamashita T, Jimbow K, Kamihira M (2013) T-cell receptor repertoires of tumor-infiltrating lymphocytes after hyperthermia using functionalized magnetite nanoparticles. Nanomedicine Lond 8(6):891–902. https://doi.org/10.2217/nnm.12.142

    Article  CAS  PubMed  Google Scholar 

  34. Haymaker C, Andtbacka RHI, Johnson DB, Shaheen MF, Rahimian S, Chunduru S, Gabrail N, Doolittle G, Puzanov I, Markowitz J, Bernatchez C, Diab A (2020) 1083MO Final results from ILLUMINATE-204, a phase I/II trial of intratumoral tilsotolimod in combination with ipilimumab in PD-1 inhibitor refractory advanced melanoma. Ann Oncol 31(S4):S736. https://doi.org/10.1016/j.annonc.2020.08.1207

    Article  Google Scholar 

  35. Weihrauch MR, Richly H, von Bergwelt-Baildon MS, Becker HJ, Schmidt M, Hacker UT, Shimabukuro-Vornhagen A, Holtick U, Nokay B, Schroff M, Wittig B, Scheulen ME (2015) Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur J Cancer 51(2):146–156. https://doi.org/10.1016/j.ejca.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  36. Rastinehad AR, Anastos H, Wajswol E, Winoker JS, Sfakianos JP, Doppalapudi SK, Carrick MR, Knauer CJ, Taouli B, Lewis SC, Tewari AK, Schwartz JA, Canfield SE, George AK, West JL, Halas NJ (2019) Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci USA 116(37):18590–18596. https://doi.org/10.1073/pnas.1906929116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldöfner N, Scholz R, Deger S, Wust P, Loening SA, Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia 21(7):637–647. https://doi.org/10.1080/02656730500158360

    Article  CAS  PubMed  Google Scholar 

  38. Moy AJ, Tunnell JW (2017) Combinatorial immunotherapy and nanoparticle mediated hyperthermia. Adv Drug Deliv Rev 114:175–183. https://doi.org/10.1016/j.addr.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  39. Chao Y, Chen G, Liang C, Xu J, Dong Z, Han X, Wang C, Liu Z (2019) Iron nanoparticles for low-power local magnetic hyperthermia in combination with immune checkpoint blockade for systemic antitumor therapy. Nano Lett 19(7):4287–4296. https://doi.org/10.1021/acs.nanolett.9b00579

    Article  CAS  PubMed  Google Scholar 

  40. Duan X, Chan C, Lin W (2019) Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew Chem Int Ed Engl 58(3):670–680. https://doi.org/10.1002/anie.201804882

    Article  CAS  PubMed  Google Scholar 

  41. Payne M, Bossmann SH, Basel MT (2020) Direct treatment versus indirect: Thermo-ablative and mild hyperthermia effects. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12(5):e1638. https://doi.org/10.1002/wnan.1638

    Article  PubMed  Google Scholar 

  42. Takada T, Yamashita T, Sato M, Sato A, Ono I, Tamura Y, Sato N, Miyamoto A, Ito A, Honda H, Wakamatsu K, Ito S, Jimbow K (2009) Growth inhibition of re-challenge B16 melanoma transplant by conjugates of melanogenesis substrate and magnetite nanoparticles as the basis for developing melanoma-targeted chemo-thermo-immunotherapy. J Biomed Biotechnol 2009:457936. https://doi.org/10.1155/2009/457936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mori K, Sakai H, Suzuki S, Akutsu Y, Ishikawa M, Imaizumi M, Tada K, Aihara M, Sawada Y, Yokoyama M, Sato Y, Endo Y, Zeko Suzuki Z, Sato S, Sasaki H, Yokoyama S, Hayashi T, Uchida T, Hiwatashi K, Ishida N, Fujimaki M, Yamada K (1990) Effects of glycyrrhizin (SNMC: stronger neo-minophagen C) in hemophilia patients with HIV-1 infection. Tohoku J Exp Med 162(2):183–93

    Article  CAS  PubMed  Google Scholar 

  44. Gowda P, Patrick S, Joshi SD, Kumawat RK, Sen E (2021) Glycyrrhizin prevents SARS-CoV-2 S1 and Orf3a induced high mobility group box 1 (HMGB1) release and inhibits viral replication. Cytokine 142:155496. https://doi.org/10.1016/j.cyto.2021.155496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smolarczyk R, Cichoń T, Matuszczak S, Mitrus I, Lesiak M, Kobusińska M, Kamysz W, Jarosz M, Sieroń A, Szala S (2012) The role of Glycyrrhizin, an inhibitor of HMGB1 protein, in anticancer therapy. Arch Immunol Ther Exp Warsz 60(5):391–399. https://doi.org/10.1007/s00005-012-0183-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI (Nos. 20H02538 and 19K22086). We thank Gabrielle White Wolf, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

This work was partially supported by JSPS KAKENHI (No. 20H02538 and No. 19K22086).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by A.N. and Y.S. The first draft of the manuscript was written by A.I. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Akira Ito.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethics approval and consent to participate

All animal experiments were approved by the Ethics Committee for Animal Experiments of the School of Engineering, Nagoya University (G220006).

Informed consent

The clinical studies mentioed above paragraph were approved by Clinical Trial Research Protocol No. 18-67, Sapporo Medical University with funding for research on Advanced Medical Technology from the Ministry of Health, Labor and Welfare of Japan [Project No. H21-Nano-6]. In the case of the present paper, the manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 90 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikawa, A., Suzuki, Y., Kaneko, M. et al. Combination of magnetic hyperthermia and immunomodulators to drive complete tumor regression of poorly immunogenic melanoma. Cancer Immunol Immunother 72, 1493–1504 (2023). https://doi.org/10.1007/s00262-022-03345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03345-8

Keywords

Navigation