Skip to main content

Advertisement

Log in

Melanoma cells can be eliminated by sialylated CD43 × CD3 bispecific T cell engager formats in vitro and in vivo

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Targeted cancer therapy with monoclonal antibodies has proven successful for different cancer types but is limited by the availability of suitable antibody targets. CD43s, a unique sialylated form of CD43 expressed by hematologic malignancies, is a recently identified target and antibodies interacting with CD43s may have therapeutic potential against acute myeloid leukemia (AML) and myelodysplastic syndrome. CD43s is recognized by the human antibody AT1413, that was derived from a high-risk AML patient who successfully cleared leukemia after allogeneic stem cell transplantation. Here we observed that AT1413 binds also to certain non-hematopoietic tumor cells, particularly melanoma and breast cancer. AT1413 immune precipitated CD43s from melanoma cells confirming that it recognizes the same target on melanoma as on AML. AT1413 induced antibody-dependent cellular cytotoxicity against short-term cultured patient-derived melanoma samples. However, AT1413 was unable to affect the growth of melanoma cells in vivo. To increase the efficacy of AT1413 as a therapeutic antibody, we generated two different formats of bispecific T-cell engaging antibodies (TCEs): one binding bivalently (bTCE) and the other monovalently (knob-in-hole; KiH) to both CD43s and CD3ε. In vitro, these TCEs redirected T-cell cytotoxicity against melanoma cells with differences in potencies. To investigate their effects in vivo, we grafted mice that harbor a human immune system with the melanoma cell line A375. Treatment with both AT1413 bTCE and AT1413 KiH significantly reduced tumor outgrowth in these mice. These data indicate a broad therapeutic potential of AT1413 that includes AML and CD43s-expressing solid tumors that originate from CD43-negative tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

bTCE:

Bivalent TCE

CD43s:

Sialylated CD43

E:T:

Effector-to-target cell

HIS:

Human immune system

IP:

Immunoprecipitated

KiH:

Knob-in-hole

pMHC:

Peptide MHC

SPL:

Spleen

TCE:

T-cell engager

TUM:

Tumor

References

  1. Hargadon KM, Johnson CE, Williams CJ (2018) Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol 62:29–39. https://doi.org/10.1016/j.intimp.2018.06.001

    Article  CAS  PubMed  Google Scholar 

  2. Serrano P, Hartmann M, Schmitt E, Franco P, Amexis G, Gross J, Mayer-Nicolai C (2019) Clinical development and initial approval of novel immune checkpoint inhibitors in oncology: insights from a global regulatory perspective. Clin Pharmacol Ther 105:582–597. https://doi.org/10.1002/cpt.1123

    Article  PubMed  Google Scholar 

  3. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Dieras V, Hegg R, Im SA, Shaw Wright G, Henschel V, Molinero L, Chui SY, Funke R, Husain A, Winer EP, Loi S, Emens LA (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379:2108–2121. https://doi.org/10.1056/NEJMoa1809615

    Article  CAS  PubMed  Google Scholar 

  4. Markham A, Duggan S (2018) Cemiplimab: first global approval. Drugs 78:1841–1846. https://doi.org/10.1007/s40265-018-1012-5

    Article  CAS  PubMed  Google Scholar 

  5. June CH, Warshauer JT, Bluestone JA (2017) Is autoimmunity the Achilles’ heel of cancer immunotherapy? Nat Med 23:540–547. https://doi.org/10.1038/nm.4321

    Article  CAS  PubMed  Google Scholar 

  6. Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, Shabafrouz K, Ribi C, Cairoli A, Guex-Crosier Y, Kuntzer T, Michielin O, Peters S, Coukos G, Spertini F, Thompson JA, Obeid M (2019) Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol 16:563–580. https://doi.org/10.1038/s41571-019-0218-0

    Article  CAS  PubMed  Google Scholar 

  7. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, Jäger U, Jaglowski S, Andreadis C, Westin JR, Fleury I, Bachanova V, Foley SR, Ho PJ, Mielke S, Magenau JM, Holte H, Pantano S, Pacaud LB, Awasthi R, Chu J, Anak Ö, Salles G, Maziarz RT (2019) Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 380:45–56. https://doi.org/10.1056/NEJMoa1804980

    Article  CAS  PubMed  Google Scholar 

  8. Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, Lin Y, Braunschweig I, Hill BT, Timmerman JM, Deol A, Reagan PM, Stiff P, Flinn IW, Farooq U, Goy A, McSweeney PA, Munoz J, Siddiqi T, Chavez JC, Herrera AF, Bartlett NL, Wiezorek JS, Navale L, Xue A, Jiang Y, Bot A, Rossi JM, Kim JJ, Go WY, Neelapu SS (2019) Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol 20:31–42. https://doi.org/10.1016/S1470-2045(18)30864-7

    Article  CAS  PubMed  Google Scholar 

  9. Slaney CY, Wang P, Darcy PK, Kershaw MH (2018) CARs versus biTEs: a comparison between T cell–redirection strategies for cancer treatment. Cancer Discov 8:924–934. https://doi.org/10.1158/2159-8290.CD-18-0297

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Kaur G, Sankin AI, Chen F, Guan F, Zang X (2019) Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. J Hematol Oncol 12:59. https://doi.org/10.1186/s13045-019-0746-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gillissen MA, de Jong G, Kedde M, Yasuda E, Levie SE, Moiset G, Hensbergen PJ, Bakker AQ, Wagner K, Villaudy J, van Helden PM, Spits H, Hazenberg MD (2017) Patient-derived antibody recognizes a unique CD43 epitope expressed on all AML and has antileukemia activity in mice. Blood Adv 1:1551–1564. https://doi.org/10.1182/bloodadvances.2017008342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bartels L, De Jong G, Gillissen MA, Yasuda E, Kattler V, Bru C, Fatmawati C, Van Hal-Van Veen SE, Cercel MG, Moiset G, Bakker AQ, Van Helden PM, Villaudy J, Hazenberg MD, Spits H, Wagner K (2019) A chemo-enzymatically linked bispecific antibody retargets T cells to a sialylated epitope on CD43 in acute myeloid leukemia. Cancer Res 79:3372–3382. https://doi.org/10.1158/0008-5472.CAN-18-0189

    Article  CAS  PubMed  Google Scholar 

  13. Rosenstein Y, Santana A, Pedraza-Alva G (1999) CD43, a molecule with multiple functions. Immunol Res 20:89–99. https://doi.org/10.1007/BF02786465

    Article  CAS  PubMed  Google Scholar 

  14. Tuccillo FM, de Laurentiis A, Palmieri C, Fiume G, Bonelli P, Borrelli A, Tassone P, Scala I, Buonaguro FM, Quinto I, Scala G (2014) Aberrant glycosylation as biomarker for cancer: focus on CD43. Biomed Res Int 2014:742831. https://doi.org/10.1155/2014/742831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodriguez E, Schetters STT, van Kooyk Y (2018) The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol 18:204–211. https://doi.org/10.1038/nri.2018.3

    Article  CAS  PubMed  Google Scholar 

  16. Batdorf BH, Kroft SH, Hosking PR, Harrington AM, Mackinnon AC, Olteanu H (2017) Evaluation of CD43 expression in non-hematopoietic malignancies. Ann Diagn Pathol 29:23–27. https://doi.org/10.1016/j.anndiagpath.2017.04.010

    Article  PubMed  Google Scholar 

  17. Fernandez-Rodriguez J, Andersson CX, Laos S, Baeckström D, Sikut A, Sikut R, Hansson GC (2002) The leukocyte antigen CD43 is expressed in different cell lines of nonhematopoietic origin. Tumor Biol 23:193–201. https://doi.org/10.1159/000067252

    Article  CAS  Google Scholar 

  18. Kadaja-Saarepuu L, Laos S, Jääger K, Viil J, Balikova A, Lõoke M, Hansson GC, Maimets T (2008) CD43 promotes cell growth and helps to evade FAS-mediated apoptosis in non-hematopoietic cancer cells lacking the tumor suppressors p53 or ARF. Oncogene 27:1705–1715. https://doi.org/10.1038/sj.onc.1210802

    Article  CAS  PubMed  Google Scholar 

  19. Balikova A, Jääger K, Viil J, Maimets T, Kadaja-Saarepuu L (2012) Leukocyte marker CD43 promotes cell growth in co-operation with β-catenin in non-hematopoietic cancer cells. Int J Oncol 41:299–309. https://doi.org/10.3892/ijo.2012.1440

    Article  CAS  PubMed  Google Scholar 

  20. Verdegaal EME, Visser M, Ramwadhdoebé TH, Van Der Minne CE, Van Steijn JAQMJ, Kapiteijn E, Haanen JBAG, Van Der Burg SH, Nortier JWR, Osanto S (2011) Successful treatment of metastatic melanoma by adoptive transfer of blood-derived polyclonal tumor-specific CD4+ and CD8+ T cells in combination with low-dose interferon-alpha. Cancer Immunol Immunother 60:953–963. https://doi.org/10.1007/s00262-011-1004-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quax PHA, Van Muijen GNP, Weening-Verhoeff EJD, Lund LR, Dano K, Ruiter DJ, Verheijen JH (1991) Metastatic behavior of human melanoma cell lines in nude mice correlates with urokinase-type plasminogen activator, its type-1 inhibitor, and urokinase-mediated matrix degradation. J Cell Biol 115:191–199. https://doi.org/10.1083/jcb.115.1.191

    Article  CAS  PubMed  Google Scholar 

  22. Luiten RM, Kueter EWM, Mooi W, Gallee MPW, Rankin EM, Gerritsen WR, Clift SM, Nooijen WJ, Weder P, Van De Kasteele WF, Sein J, Van Den Berk PCM, Nieweg OE, Berns AM, Spits H, de Gast GC (2005) Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients. J Clin Oncol 23:8978–8991. https://doi.org/10.1200/JCO.2005.01.6816

    Article  CAS  PubMed  Google Scholar 

  23. Kwakkenbos MJ, Diehl SA, Yasuda E, Bakker AQ, Van Geelen CMM, Lukens MV, Van Bleek GM, Widjojoatmodjo MN, Bogers WMJM, Mei H, Radbruch A, Scheeren FA, Spits H, Beaumont T (2010) Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat Med 16:123–128. https://doi.org/10.1038/nm.2071

    Article  CAS  PubMed  Google Scholar 

  24. Wagner K, Kwakkenbos MJ, Claassena YB, Maijoor K, Böhne M, Van Der Sluijs KF, Witte MD, Van Zoelen DJ, Cornelissen LA, Beaumont T, Bakker AQ, Ploegh HL, Spits H (2014) Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity. Proc Natl Acad Sci USA 111:16820–16825. https://doi.org/10.1073/pnas.1408605111

    Article  CAS  PubMed  Google Scholar 

  25. Bartels L, Ploegh HL, Spits H, Wagner K (2019) Preparation of bispecific antibody-protein adducts by site-specific chemo-enzymatic conjugation. Methods 154:93–101. https://doi.org/10.1016/j.ymeth.2018.07.013

    Article  CAS  PubMed  Google Scholar 

  26. Moore GL, Bernett MJ, Rashid R, Pong EW, Nguyen DHT, Jacinto J, Eivazi A, Nisthal A, Diaz JE, Chu SY, Muchhal US, Desjarlais JR (2019) A robust heterodimeric Fc platform engineered for efficient development of bispecific antibodies of multiple formats. Methods 154:38–50. https://doi.org/10.1016/j.ymeth.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  27. Legrand N, Weijer K, Spits H (2008) Experimental model for the study of the human immune system. In: Ewbank J, Vivier E (eds) Innate immunity. Methods in molecular biology, vol 415. Humana Press, Totowa, pp 65–82

    Chapter  Google Scholar 

  28. Legrand N, Weijer K, Spits H (2006) Experimental models to study development and function of the human immune system in vivo. J Immunol 176:2053–2058. https://doi.org/10.4049/jimmunol.176.4.2053

    Article  CAS  PubMed  Google Scholar 

  29. Sundar Rajan V, Laurent VM, Verdier C, Duperray A (2017) Unraveling the receptor-ligand interactions between bladder cancer cells and the endothelium using AFM. Biophys J 112:1246–1257. https://doi.org/10.1016/j.bpj.2017.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tuccillo FM, Palmieri C, Fiume G, de Laurentiis A, Schiavone M, Falcone C, Iaccino E, Galandrini R, Capuano C, Santoni A, D’Armiento FP, Arra C, Barbieri A, Dal Piaz F, Venzon D, Bonelli P, Buonaguro FM, Scala I, Mallardo M, Quinto I, Scala G (2014) Cancer-associated CD43 glycoforms as target of immunotherapy. Mol Cancer Ther 13:752–762. https://doi.org/10.1158/1535-7163.MCT-13-0651

    Article  CAS  PubMed  Google Scholar 

  31. Camacho-Concha N, Olivos-Ortiz A, Nuñez-Rivera A, Pedroza-Saavedra A, Gutierrez-Xicotencatl L, Rosenstein Y, Pedraza-Alva G (2013) CD43 promotes cells transformation by preventing merlin-mediated contact inhibition of growth. PLoS ONE 8:e80806. https://doi.org/10.1371/journal.pone.0080806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park WS, Bae YM, Chung DH, Kim TJ, Choi EY, Chung JK, Lee MC, Park SY, Park MH, Park SH (1998) A cell surface molecule, JL1; a specific target for diagnosis and treatment of leukemias. Leukemia 12:1583–1590. https://doi.org/10.1038/sj.leu.2401161

    Article  CAS  PubMed  Google Scholar 

  33. Park SH, You E, Park CJ, Jang S, Cho YU, Yoon CH, Koh KN, Im HJ, Seo JJ (2019) The incidence and immunophenotypic and genetic features of JL1 expressing cells and the therapeutic potential of an anti-JL1 antibody in de novo pediatric acute leukemias. Ann Lab Med 39:358–366. https://doi.org/10.3343/alm.2019.39.4.358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Laurentiis A, Gaspari M, Palmieri C, Falcone C, Iaccino E, Fiume G, Massa O, Masullo M, Tuccillo FM, Roveda L, Prati U, Fierro O, Cozzolino I, Troncone G, Tassone P, Scala G, Quinto I (2011) Mass spectrometry-based identification of the tumor antigen UN1 as the transmembrane CD43 sialoglycoprotein. Mol Cell Proteomics 10(M111):007898. https://doi.org/10.1074/mcp.M111.007898

    Article  CAS  PubMed  Google Scholar 

  35. Nath S, Mukherjee P (2014) MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 20:332–342. https://doi.org/10.1016/j.molmed.2014.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fiedler W, Dedosso S, Cresta S, Weidmann J, Tessari A, Salzberg M, Dietrich B, Baumeister H, Goletz S, Gianni L, Sessa C (2016) A phase i study of PankoMab-GEX, a humanised glyco-optimised monoclonal antibody to a novel tumour-specific MUC1 glycopeptide epitope in patients with advanced carcinomas. Eur J Cancer 63:55–63. https://doi.org/10.1016/j.ejca.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  37. Root AR, Cao W, Li B, LaPan P, Meade C, Sanford J, Jin M, Sullivan CO, Cummins E, Lambert M, Sheehan AD, Ma W, Gatto S, Kerns K, Lam K, Antona AMD, Zhu L, Brady WA, Benard S, King A, He T, Racie L, Arai M, Barrett D, Stochaj W, Lavallie ER, Apgar JR, Svenson K, Mosyak L, Yang Y, Chichili GR, Liu L, Li H, Burke S, Johnson S, Alderson R, Finlay WJJ, Lin L, Olland S, Somers W, Bonvini E, Gerber H, May C, Moore PA, Tchistiakova L, Bloom L (2016) Development of PF-06671008, a highly potent anti-P-cadherin/anti-CD3 bispecific DART molecule with extended half-life for the treatment of cancer. Antibodies 5:6. https://doi.org/10.3390/antib5010006

    Article  CAS  PubMed Central  Google Scholar 

  38. Harwood SL, Alvarez-Cienfuegos A, Nuñez-Prado N, Compte M, Hernández-Pérez S, Merino N, Bonet J, Navarro R, Van Bergen en Henegouwen PMP, Lykkemark S, Mikkelsen K, Mølgaard K, Jabs F, Sanz L, Blanco FJ, Roda-Navarro P, Alvarez-Vallina L (2018) ATTACK, a novel bispecific T cell-recruiting antibody with trivalent EGFR binding and monovalent CD3 binding for cancer immunotherapy. Oncoimmunology 7:e1377874. https://doi.org/10.1080/2162402X.2017.1377874

    Article  Google Scholar 

  39. Bacac M, Colombetti S, Herter S, Sam J, Perro M, Chen S, Bianchi R, Richard M, Schoenle A, Nicolini V, Diggelmann S, Limani F, Schlenker R, Hüsser T, Richter W, Bray-French K, Hinton H, Giusti AM, Freimoser-Grundschober A, Lariviere L, Neumann C, Klein C, Umaña P (2018) CD20-TCB with obinutuzumab pretreatment as next-generation treatment of hematologic malignancies. Clin Cancer Res 24:4785–4797. https://doi.org/10.1158/1078-0432.CCR-18-0455

    Article  CAS  PubMed  Google Scholar 

  40. Clynes RA, Desjarlais JR (2019) Redirected T cell cytotoxicity in cancer therapy. Annu Rev Med 27:437–450. https://doi.org/10.1146/annurev-med-062617-035821

    Article  CAS  Google Scholar 

  41. Purbhoo MA, Sutton DH, Brewer JE, Mullings RE, Hill ME, Mahon TM, Karbach J, Jäger E, Cameron BJ, Lissin N, Vyas P, Chen J-L, Cerundolo V, Jakobsen BK (2006) Quantifying and IMAGING NY-ESO-1/LAGE-1-derived epitopes on tumor cells using high affinity T cell receptors. J Immunol 176:7308–7316. https://doi.org/10.4049/jimmunol.176.12.7308

    Article  CAS  PubMed  Google Scholar 

  42. Nakatsuka SI, Oji Y, Horiuchi T, Kanda T, Kitagawa M, Takeuchi T, Kawano K, Kuwae Y, Yamauchi A, Okumura M, Kitamura Y, Oka Y, Kawase I, Sugiyama H, Aozasa K (2006) Immunohistochemical detection of WT1 protein in a variety of cancer cells. Mod Pathol 19:804–814. https://doi.org/10.1038/modpathol.3800588

    Article  CAS  PubMed  Google Scholar 

  43. Dao T, Yan S, Veomett N, Pankov D, Zhou L, Korontsvit T, Scott A, Whitten J, Maslak P, Casey E, Tan T, Liu H, Zakhaleva V, Curcio M, Doubrovina E, O’Reilly RJ, Liu C, Scheinberg DA (2013) Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med 5:17ra633. https://doi.org/10.1126/scitranslmed.3005661

    Article  CAS  Google Scholar 

  44. Dao T, Pankov D, Scott A, Korontsvit T, Zakhaleva V, Xu Y, Xiang J, Yan S, De Morais Guerreiro MD, Veomett N, Dubrovsky L, Curcio M, Doubrovina E, Ponomarev V, Liu C, O’Reilly RJ, Scheinberg DA (2015) Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1. Nat Biotechnol 33:1079–1086. https://doi.org/10.1038/nbt.3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maslak PG, Dao T, Bernal Y, Chanel SM, Zhang R, Frattini M, Rosenblat T, Jurcic JG, Brentjens RJ, Arcila ME, Rampal R, Park JH, Douer D, Katz L, Sarlis N, Tallman MS, Scheinberg DA (2018) Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv 2:224–234. https://doi.org/10.1182/bloodadvances.2017014175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harper J, Adams KJ, Bossi G, Wright DE, Stacey AR, Bedke N, Martinez-Hague R, Blat D, Humbert L, Buchanan H, Le Provost GS, Donnellan Z, Carreira RJ, Paston SJ, Weigand LU, Canestraro M, Sanderson JP, Gordon-Smith SB, Lowe KL, Rygiel KA, Powlesland AS, Vuidepot A, Hassan NJ, Cameron BJ, Jakobsen BK, Dukes J (2018) An approved in vitro approach to preclinical safety and efficacy evaluation of engineered T cell receptor anti-CD3 bispecific (ImmTAC) molecules. PLoS ONE 13:e0205491. https://doi.org/10.1371/journal.pone.0205491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Middleton MR, Steven NM, Evans TJ, Infante JR, Sznol M, Mulatero C, Hamid O, Shoushtari AN, Shingler W, Johnson A, Patel S, Parker D, Krige D, McAlpine C, Coughlin CM, Hassan NJ, Jakobsen BK, Corrie P (2016) Safety, pharmacokinetics and efficacy of IMCgp100, a first-in-class soluble TCR-antiCD3 bispecific t cell redirector with solid tumour activity: Results from the FIH study in melanoma. J Clin Oncol 34:3016. https://doi.org/10.1200/JCO.2016.34.15_suppl.3016

    Article  Google Scholar 

  48. Hemmer B, Stefanova I, Vergelli M, Germain RN, Martin R (1998) Relationships among TCR ligand potency, thresholds for effector function elicitation, and the quality of early signaling events in human T cells. J Immunol 160:5807–5814

    CAS  PubMed  Google Scholar 

  49. Leong SR, Sukumaran S, Hristopoulos M, Totpal K, Stainton S, Lu E, Wong A, Tam L, Newman R, Vuillemenot BR, Ellerman D, Gu C, Mathieu M, Dennis MS, Nguyen A, Zheng B, Zhang C, Lee G, Chu YW, Prell RA, Lin K, Laing ST, Polson AG (2017) An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood 129:609–618. https://doi.org/10.1182/blood-2016-08-735365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are greatly indebted to the patients who participated in this study.

Funding

GdJ is financially supported by the Dutch Cancer Society (KWF 2014-6557). LBA is financially supported by a Zwaartekracht grant to HS from the Netherlands Organization for Scientific Research (NWO ICI00004). RS and CF are financially supported by the Dutch Cancer Society (UVA 2010-4822). MDH is supported by a VIDI grant by the Netherlands Organization for Health Research and Development (NWO ZonMW 91715362) and by a Fellowship of the Landsteiner Foundation for Blood Transfusion Research (LSBR 1438F).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HS, MDH, KW and PMH; methodology: GJ, LB, MK, EMEV, MAG, EY, AQB, JV and KW; formal analysis and investigation: GJ, LB, RS, MK, EMEV, EY, SEL, MGC, SEHV and CF; writing—original draft preparation: GJ and LB; writing—review and editing: MDH, HS, KW and PMH; funding acquisition: MDH, HS and KW; resources: EMEV, AQB, SHB, YBC and DB; supervision: HS, MDH and PMH

Corresponding author

Correspondence to P. M. van Helden.

Ethics declarations

Conflict of interest

MK, SEL, MGC, SEHV, CF, DB, EY, YBC, AQB, RS, JV, HS and PMH, have ownership interests in AIMM Therapeutics. MK, MAG, PMH, MDH and HS are inventors on patent WO2016209079A1.

Ethical approval

All animal procedures were carried out in accordance with Dutch and European laws and the institutional guidelines of the Amsterdam UMC. Experiments were approved by the animal experimental committee Amsterdam (DEC) and the central committee for animal experiments (CCD) under license AVD118002016795.

Consent to participate

Patient-derived melanoma samples were isolated with approval of the Medical Ethical Committee of the Leiden University Medical Center after obtaining informed consent, under LUMC study number P04.085.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 328 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jong, G., Bartels, L., Kedde, M. et al. Melanoma cells can be eliminated by sialylated CD43 × CD3 bispecific T cell engager formats in vitro and in vivo. Cancer Immunol Immunother 70, 1569–1581 (2021). https://doi.org/10.1007/s00262-020-02780-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02780-9

Keywords

Navigation