Skip to main content

Advertisement

Log in

High tumor mutational burden and T-cell activation are associated with long-term response to anti-PD1 therapy in Lynch syndrome recurrent glioblastoma patient

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Glioblastomas (GBMs) in patients harboring somatic or germinal mutations of mismatch-repair (MMR) genes exhibit a hypermutable phenotype. Here, we describe a GBM patient with increased tumor mutational burden and germline MMR mutations, treated using anti-PD1 therapy.

Methods

A woman with newly diagnosed GBM (nGBM) was treated by surgery, radiotherapy, and temozolomide. The tumor recurred after 13 months leading to a second surgery and treatment with nivolumab. Whole-exome sequencing was performed on the nGBM, recurrent GBM (rGBM), and blood. Immune infiltration was investigated by immunohistochemistry and the immune response in the blood during treatment was analyzed by flow cytometry.

Results

High density of infiltrating CD163 + cells was found in both GBM specimens. Large numbers of CD3 + and CD8 + T cells were homogeneously distributed in the nGBM. The infiltration of CD4 + T cells and a different CD8 + T cell density were observed in the rGBM. Both GBM shared 12,431 somatic mutations, with 113 substitutions specific to the nGBM and 1,683 specific to the rGBM. Germline variants included pathogenic mutation in the MSH2 (R359S) gene, suggesting the diagnosis of Lynch syndrome. Systemic immunophenotyping revealed the generation of CD8 + T memory cells and persistent activation of CD4 + T cells. The patient is still receiving nivolumab 68 months after the second surgery.

Conclusions

Our observations indicate that the hypermutator phenotype associated with germinal mutations of MMR genes and abundant T-cell infiltration contributes to a durable clinical benefit sustained by a persistent and robust immune response during anti-PD1 therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Tomasetti C, Vogelstein B (2015) Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347:78–81. https://doi.org/10.1126/science.1260825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bouffet E, Larouche V, Campbell BB et al (2016) Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 34:2206–2211. https://doi.org/10.1200/JCO.2016.66.6552

    Article  CAS  PubMed  Google Scholar 

  3. Chang K, Bai HX, Zhou H et al (2018) Residual convolutional neural network for the determination of IDH status in low- and high-grade gliomas from MR imaging. Clin Cancer Res 24:1073–1081. https://doi.org/10.1158/1078-0432.CCR-17-2236

    Article  CAS  PubMed  Google Scholar 

  4. Campbell BB, Light N, Fabrizio D et al (2017) Comprehensive analysis of hypermutation in human cancer. Cell 171:1042-1056.e10. https://doi.org/10.1016/j.cell.2017.09.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rodriguez-Hernandez I, Perdomo S, Santos-Briz A et al (2014) Analysis of DNA repair gene polymorphisms in glioblastoma. Gene 536:79–83. https://doi.org/10.1016/j.gene.2013.11.077

    Article  CAS  PubMed  Google Scholar 

  6. Lynch HT, Lanspa S, Shaw T et al (2018) Phenotypic and genotypic heterogeneity of Lynch syndrome: a complex diagnostic challenge. Fam Cancer 17:403–414. https://doi.org/10.1007/s10689-017-0053-3

    Article  PubMed  Google Scholar 

  7. Vasen HFA, Ghorbanoghli Z, Bourdeaut F et al (2014) Guidelines for surveillance of individuals with constitutional mismatch repair-deficiency proposed by the European Consortium “Care for CMMR-D” (C4CMMR-D). J Med Genet 51:283–293. https://doi.org/10.1136/jmedgenet-2013-102238

    Article  CAS  PubMed  Google Scholar 

  8. Watson P, Vasen HFA, Mecklin J-P et al (2008) The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. Int J Cancer 123:444–449. https://doi.org/10.1002/ijc.23508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Therkildsen C, Ladelund S, Rambech E et al (2015) Glioblastomas, astrocytomas and oligodendrogliomas linked to Lynch syndrome. Eur J Neurol 22:717–724. https://doi.org/10.1111/ene.12647

    Article  CAS  PubMed  Google Scholar 

  10. Johnson BE, Mazor T, Hong C et al (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193. https://doi.org/10.1126/science.1239947

    Article  CAS  PubMed  Google Scholar 

  11. Mahlokozera T, Vellimana AK, Li T et al (2018) Biological and therapeutic implications of multisector sequencing in newly diagnosed glioblastoma. Neuro Oncol 20:472–483. https://doi.org/10.1093/neuonc/nox232

    Article  CAS  PubMed  Google Scholar 

  12. Finocchiaro G, Pellegatta S (2016) Immunotherapy with dendritic cells loaded with glioblastoma stem cells: from preclinical to clinical studies. Cancer Immunol Immunother 65:101–109. https://doi.org/10.1007/s00262-015-1754-9

    Article  CAS  PubMed  Google Scholar 

  13. Chowell D, Morris LGT, Grigg CM et al (2018) Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359:582–587. https://doi.org/10.1126/science.aao4572

    Article  CAS  PubMed  Google Scholar 

  14. Overman MJ, McDermott R, Leach JL et al (2017) Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 18:1182–1191. https://doi.org/10.1016/S1470-2045(17)30422-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reardon DA, Brandes AA, Omuro A et al (2020) Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the checkmate 143 phase 3 randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2020.1024

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wen PY, Chang SM, Van den Bent MJ et al (2017) Response assessment in neuro-oncology clinical trials. J Clin Oncol 35:2439–2449. https://doi.org/10.1200/JCO.2017.72.7511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trifonov V, Pasqualucci L, Tiacci E et al (2013) SAVI: a statistical algorithm for variant frequency identification. BMC Syst Biol 7(Suppl 2):S2. https://doi.org/10.1186/1752-0509-7-S2-S2

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eoli M, Menghi F, Bruzzone MG et al (2007) Methylation of O6-methylguanine DNA methyltransferase and loss of heterozygosity on 19q and/or 17p are overlapping features of secondary glioblastomas with prolonged survival. Clin Cancer Res 13:2606–2613. https://doi.org/10.1158/1078-0432.CCR-06-2184

    Article  CAS  PubMed  Google Scholar 

  20. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  21. Heald B, Hampel H, Church J et al (2020) Collaborative group of the Americas on Inherited Gastrointestinal Cancer Position statement on multigene panel testing for patients with colorectal cancer and/or polyposis. Fam Cancer 19:223–239. https://doi.org/10.1007/s10689-020-00170-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alexandrov LB, Kim J, Haradhvala NJ et al (2020) The repertoire of mutational signatures in human cancer. Nature 578:94–101. https://doi.org/10.1038/s41586-020-1943-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Touat M, Li YY, Boynton AN et al (2020) Mechanisms and therapeutic implications of hypermutation in gliomas. Nature 580:517–523. https://doi.org/10.1038/s41586-020-2209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mandal R, Samstein RM, Lee K-W et al (2019) Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science 364:485–491. https://doi.org/10.1126/science.aau0447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eoli M, Corbetta C, Anghileri E et al (2019) Expansion of effector and memory T cells is associated with increased survival in recurrent glioblastomas treated with dendritic cell immunotherapy. Neurooncol Adv 1:vds022. https://doi.org/10.1093/noajnl/vdz022

    Article  Google Scholar 

  26. Spitzer MH, Carmi Y, Reticker-Flynn NE et al (2017) Systemic immunity is required for effective cancer immunotherapy. Cell 168:487-502.e15. https://doi.org/10.1016/j.cell.2016.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kagamu H, Kitano S, Yamaguchi O et al (2020) CD4+ T-cell immunity in the peripheral blood correlates with response to anti-PD-1 therapy. Cancer Immunol Res 8:334–344. https://doi.org/10.1158/2326-6066.CIR-19-0574

    Article  CAS  PubMed  Google Scholar 

  28. Nduom EK, Wei J, Yaghi NK et al (2016) PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol 18:195–205. https://doi.org/10.1093/neuonc/nov172

    Article  CAS  PubMed  Google Scholar 

  29. AlHarbi M, Ali Mobark N, AlMubarak L et al (2018) Durable response to nivolumab in a pediatric patient with refractory glioblastoma and constitutional biallelic mismatch repair deficiency. Oncologist 23:1401–1406. https://doi.org/10.1634/theoncologist.2018-0163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330. https://doi.org/10.1056/NEJMoa1412082

    Article  CAS  PubMed  Google Scholar 

  31. Mazzaschi G, Facchinetti F, Missale G et al (2019) The circulating pool of functionally competent NK and CD8+ cells predicts the outcome of anti-PD1 treatment in advanced NSCLC. Lung Cancer 127:153–163. https://doi.org/10.1016/j.lungcan.2018.11.038

    Article  PubMed  Google Scholar 

  32. Vogelstein B, Papadopoulos N, Velculescu VE et al (2013) Cancer genome landscapes. Science 339:1546–1558. https://doi.org/10.1126/science.1235122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Terui H, Tachikawa T, Kakuta M et al (2013) Molecular and clinical characteristics of MSH6 germline variants detected in colorectal cancer patients. Oncol Rep 30:2909–2916. https://doi.org/10.3892/or.2013.2781

    Article  CAS  PubMed  Google Scholar 

  34. Jue TR, Olafson LR, Siddell AH et al (2019) A case study of a long-term glioblastoma survivor with unmethylated MGMT and hypermutated genotype. Cold Spring Harb Mol Case Stud. https://doi.org/10.1101/mcs.a003251

    Article  PubMed  PubMed Central  Google Scholar 

  35. Le DT, Durham JN, Smith KN et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–413. https://doi.org/10.1126/science.aan6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ahmad H, Fadul CE, Schiff D, Purow B (2019) Checkpoint inhibitor failure in hypermutated and mismatch repair-mutated recurrent high-grade gliomas. Neurooncol Pract 6:424–427. https://doi.org/10.1093/nop/npz016

    Article  PubMed  PubMed Central  Google Scholar 

  37. Palmieri G, Colombino M, Cossu A et al (2017) Genetic instability and increased mutational load: which diagnostic tool best direct patients with cancer to immunotherapy? J Transl Med 15:17. https://doi.org/10.1186/s12967-017-1119-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Q, Hu B, Hu X et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32:42-56.e6. https://doi.org/10.1016/j.ccell.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krieg C, Nowicka M, Guglietta S et al (2018) High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med 24:144–153. https://doi.org/10.1038/nm.4466

    Article  CAS  PubMed  Google Scholar 

  40. Park J, Kim CG, Shim J-K et al (2019) Effect of combined anti-PD-1 and temozolomide therapy in glioblastoma. Oncoimmunology 8:e1525243. https://doi.org/10.1080/2162402X.2018.1525243

    Article  PubMed  Google Scholar 

  41. Lukas RV, Rodon J, Becker K et al (2018) Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. J Neurooncol 140:317–328. https://doi.org/10.1007/s11060-018-2955-9

    Article  CAS  PubMed  Google Scholar 

  42. Cloughesy TF, Mochizuki AY, Orpilla JR et al (2019) Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 25:477–486. https://doi.org/10.1038/s41591-018-0337-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Silvia Musio for collaborating in flow cytometry acquisitions, Massimo Costanza for critical reading and suggestions, the staff of the SOL Group Spa-Italy for the cryo-management service and the technical assistance, and Sara Murrone for graphic support. The manuscript was edited by American Journal Experts (AJE).

Funding

The study was supported by funds provided by no-profit associations, such as Brancatelli ONLUS, il Fondo di Gio ONLUS, and donations of patient families for the development of immunotherapy strategies based on the project entitled: “Immunotherapy in preclinical models of glioma”.

Author information

Authors and Affiliations

Authors

Contributions

Patient recruitment, treatment, and follow-up were performed by EA with the support of ME. Histological analysis and interpretations were performed by MP and BP. Analysis and quantification of the immune infiltrates and preparation of Figs. 2 and 3 were performed by NDI. Genetic data were generated by RP and TL. JZ and RR contributed to analysis of WES data and manuscript writing. Radiological studies were performed by VC. AI contributed to data interpretation. Supervision of the study and was contributed by GF. Immune monitoring data and interpretations were performed by SP. EA, GF and SP co-wrote the manuscript. All authors have critically reviewed and approved the final manuscript.

Corresponding author

Correspondence to Elena Anghileri.

Ethics declarations

Conflict of interest

There are no competing interests in the report.

Ethics approval and consent to participate

An informed consent was signed for the use of biological material for research purposes.

Consent for publication

Written consent was obtained from the patient for publication of this case report and any accompanying images.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 817 kb)

Supplementary file2 (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anghileri, E., Di Ianni, N., Paterra, R. et al. High tumor mutational burden and T-cell activation are associated with long-term response to anti-PD1 therapy in Lynch syndrome recurrent glioblastoma patient. Cancer Immunol Immunother 70, 831–842 (2021). https://doi.org/10.1007/s00262-020-02769-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02769-4

Keywords

Navigation