Skip to main content

Advertisement

Log in

Immunotherapy with dendritic cells loaded with glioblastoma stem cells: from preclinical to clinical studies

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Different approaches have been explored to raise effective antitumor responses against glioblastoma (GBM), the deadliest of primary brain tumors. In many clinical studies, cancer vaccines have been based on dendritic cells (DCs) loaded with peptides, representing one or more specific tumor antigens or whole lysates as a source of multiple antigens. Randomized clinical trials using DCs are ongoing, and results of efficacy are not yet available. Such strategies are feasible and safe; however, immune-suppressive microenvironment, absence of appropriate specific epitopes to target, and cancer immunoediting can limit their efficacy. The aim of this review is to describe how the definition of novel and more specific targets may increase considerably the possibility of successful DC immunotherapy. By proposing to target glioblastoma stem-like cells (GSCs), the immune response will be pointed to eradicating factors and pathways highly relevant to GBM biology. Preclinical observations on efficacy, and preliminary results of immunotherapy trials, encourage exploring the clinical efficacy of DC immunotherapy in GBM patients using high-purity, GSC-loaded DC vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

b-FGF:

Basic-fibroblast growth factor

CSCs:

Cancer stem cells

CUSA:

Cavitation ultrasonics surgical aspirator

DCs:

Dendritic cells

EGF:

Epidermal growth factor

GBM:

Glioblastoma

GMP:

Good manufacturing practice

GSCs:

Glioblastoma stem-like cells

HIF-1α:

Hypoxia-inducible factor-1α

IFN-γ:

Interferon-γ

NK:

Natural killer

NS:

Neurospheres

OS:

Overall survival

PBMCs:

Peripheral blood mononuclear cells

PFS:

Progression-free survival

TAA:

Tumor-associated antigen

TGF-β:

Transforming growth factor

TMZ:

Temozolomide

TNF-α:

Tumor necrosis factor-alpha

VEGF:

Vascular endothelial growth factor

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  2. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570. doi:10.1126/science.1203486

    Article  PubMed  CAS  Google Scholar 

  3. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915. doi:10.1038/nm1100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Siesjö P, Visse E, Sjögren HO (1996) Cure of established, intracerebral rat gliomas induced by therapeutic immunizations with tumor cells and purified APC or adjuvant IFN-gamma treatment. J Immunother Emphas Tumor Immunol 19:334–345

    Article  Google Scholar 

  5. Liau LM, Black KL, Prins RM et al (1999) Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J Neurosurg 90:1115–1124. doi:10.3171/jns.1999.90.6.1115

    Article  PubMed  CAS  Google Scholar 

  6. Witham TF, Erff ML, Okada H et al (2002) 7-Hydroxystaurosporine-induced apoptosis in 9L glioma cells provides an effective antigen source for dendritic cells and yields a potent vaccine strategy in an intracranial glioma model. Neurosurgery 50(6):1327–1335

    PubMed  Google Scholar 

  7. Akasaki Y, Kikuchi T, Homma S et al (2001) Antitumor effect of immunizations with fusions of dendritic and glioma cells in a mouse brain tumor model. J Immunother 24:106–113

    Article  CAS  Google Scholar 

  8. Heimberger AB, Crotty LE, Archer GE et al (2000) Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J Neuroimmunol 103:16–25

    Article  PubMed  CAS  Google Scholar 

  9. Insug O, Ku G, Ertl HC, Blaszczyk-Thurin M (2002) A dendritic cell vaccine induces protective immunity to intracranial growth of glioma. Anticancer Res 22:613–621

    PubMed  CAS  Google Scholar 

  10. Kikuchi T, Akasaki Y, Abe T, Ohno T (2002) Intratumoral injection of dendritic and irradiated glioma cells induces anti-tumor effects in a mouse brain tumor model. Cancer Immunol Immunother 51:424–430

    Article  PubMed  CAS  Google Scholar 

  11. Ni HT, Spellman SR, Jean WC et al (2001) Immunization with dendritic cells pulsed with tumor extract increases survival of mice bearing intracranial gliomas. J Neurooncol 51:1–9

    Article  PubMed  CAS  Google Scholar 

  12. Okada H, Tahara H, Shurin MR et al (1998) Bone marrow-derived dendritic cells pulsed with a tumor-specific peptide elicit effective anti-tumor immunity against intracranial neoplasms. Int J Cancer 78:196–201

    Article  PubMed  CAS  Google Scholar 

  13. Pellegatta S, Finocchiaro G (2005) Cell therapies in neuro-oncology. Neurol Sci 26(Suppl 1):S43–S45. doi:10.1007/s10072-005-0405-x

    Article  PubMed  Google Scholar 

  14. Pellegatta S, Poliani PL, Corno D et al (2006) Dendritic cells pulsed with glioma lysates induce immunity against syngeneic intracranial gliomas and increase survival of tumor-bearing mice. Neurol Res 28:527–531. doi:10.1179/016164106X116809

    Article  PubMed  CAS  Google Scholar 

  15. De Vleeschouwer S, Van Calenbergh F, Demaerel P et al (2004) Transient local response and persistent tumor control in a child with recurrent malignant glioma: treatment with combination therapy including dendritic cell therapy. Case report. J Neurosurg 100:492–497

    PubMed  Google Scholar 

  16. Rutkowski S, De Vleeschouwer S, Kaempgen E et al (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91:1656–1662

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Wheeler CJ, Das A, Liu G et al (2004) Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res 10:5316–5326

    Article  PubMed  CAS  Google Scholar 

  18. Yamanaka R, Abe T, Yajima N et al (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89:1172–1179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yamanaka R, Homma J, Yajima N et al (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11:4160–4167. doi:10.1158/1078-0432.CCR-05-0120

    Article  PubMed  CAS  Google Scholar 

  20. Yu JS, Liu G, Ying H et al (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979. doi:10.1158/0008-5472.CAN-03-3505

    Article  PubMed  CAS  Google Scholar 

  21. Yamanaka R, Homma J, Yajima N et al (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11:4160–4167. doi:10.1158/1078-0432.CCR-05-0120

    Article  PubMed  CAS  Google Scholar 

  22. Liau LM, Prins RM, Kiertscher SM et al (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525. doi:10.1158/1078-0432.CCR-05-0464

    Article  PubMed  CAS  Google Scholar 

  23. Polyzoidis S, Ashkan K (2014) Dendritic cell immunotherapy for glioblastoma. Expert Rev Anticancer Ther 14:761–763. doi:10.1586/14737140.2014.921571

    Article  PubMed  CAS  Google Scholar 

  24. Anguille S, Smits EL, Lion E et al (2014) Clinical use of dendritic cells for cancer therapy. Lancet Oncol 15:e257–e267. doi:10.1016/S1470-2045(13)70585-0

    Article  PubMed  CAS  Google Scholar 

  25. Finocchiaro G, Pellegatta S (2014) Perspectives for immunotherapy in glioblastoma treatment. Curr Opin Oncol 26(6):608–614. doi:10.1097/CCO.0000000000000135

    Article  PubMed  CAS  Google Scholar 

  26. Lasky JL, Panosyan EH, Plant A et al (2013) Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients with newly diagnosed or recurrent high-grade gliomas. Anticancer Res 33:2047–2056

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Pellegatta S, Eoli M, Frigerio S et al (2013) The natural killer cell response and tumor debulking are associated with prolonged survival in recurrent glioblastoma patients receiving dendritic cells loaded with autologous tumor lysates. Oncoimmunology 2:e23401. doi:10.4161/onci.23401

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73. doi:10.1038/nri2216

    Article  PubMed  CAS  Google Scholar 

  29. Galluzzi L, Senovilla L, Zitvogel L, Kroemer G (2012) The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11:215–233. doi:10.1038/nrd3626

    Article  PubMed  CAS  Google Scholar 

  30. Sampson JH, Aldape KD, Archer GE et al (2011) Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol 13:324–333. doi:10.1093/neuonc/noq157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Eoli M, Pellegatta S, Frigerio S et al (2014) Association of increased progression-free survival in primary glioblastomas with lymphopenia at baseline and activation of NK and NKT cells after dendritic cell immunotherapy. In: ASCO Annual Meeting. J Clin Oncol 32:5 (suppl; abstr 2087)

  32. Pellegatta S, Eoli M, Cantini G et al (2014) P02.03 * Increased count of NK and NKT cells are associated with prolonged survival in primary glioblastoma patients treated with dendritic cell immunotherapy in combination with radio- and chemo-therapy. Neuro Oncol 16:ii33. doi:10.1093/neuonc/nou174.119 (poster)

    Article  PubMed Central  Google Scholar 

  33. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. doi:10.1038/nature03128

    Article  PubMed  CAS  Google Scholar 

  34. Quintana E, Shackleton M, Sabel MS et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598. doi:10.1038/nature07567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Beier D, Hau P, Proescholdt M et al (2007) CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015. doi:10.1158/0008-5472.CAN-06-4180

    Article  PubMed  CAS  Google Scholar 

  36. Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507. doi:10.1038/ng.127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chen R, Nishimura MC, Bumbaca SM et al (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375. doi:10.1016/j.ccr.2009.12.049

    Article  PubMed  CAS  Google Scholar 

  38. Pellegatta S, Poliani PL, Corno D et al (2006) Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 66:10247–10252. doi:10.1158/0008-5472.CAN-06-2048

    Article  PubMed  CAS  Google Scholar 

  39. Ghods AJ, Irvin D, Liu G et al (2007) Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells 25:1645–1653. doi:10.1634/stemcells.2006-0624

    Article  PubMed  CAS  Google Scholar 

  40. Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  41. Tunici P, Bissola L, Lualdi E et al (2004) Genetic alterations and in vivo tumorigenicity of neurospheres derived from an adult glioblastoma. Mol Cancer 3:25. doi:10.1186/1476-4598-3-25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lee J, Kotliarova S, Kotliarov Y et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403. doi:10.1016/j.ccr.2006.03.030

    Article  PubMed  CAS  Google Scholar 

  43. Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. doi:10.1016/j.ccr.2009.12.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Soeda A, Park M, Lee D et al (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28:3949–3959. doi:10.1038/onc.2009.252

    Article  PubMed  CAS  Google Scholar 

  45. Bhat KPL, Balasubramaniyan V, Vaillant B et al (2013) Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 24:331–346. doi:10.1016/j.ccr.2013.08.001

    Article  PubMed  CAS  Google Scholar 

  46. Sottoriva A, Spiteri I, Piccirillo SGM et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 110:4009–4014. doi:10.1073/pnas.1219747110

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bonavia R, Inda M-M, Cavenee WK, Furnari FB (2011) Heterogeneity maintenance in glioblastoma: a social network. Cancer Res 71:4055–4060. doi:10.1158/0008-5472.CAN-11-0153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Reardon DA (2015) Wen PY (2015) Glioma in 2014: unravelling tumour heterogeneity-implications for therapy. Nat Rev Clin Oncol 12(2):69–70. doi:10.1038/nrclinonc.2014.223

    Article  PubMed  CAS  Google Scholar 

  49. Stieber D, Golebiewska A, Evers L et al (2014) Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathol 127:203–219. doi:10.1007/s00401-013-1196-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Di Tomaso T, Mazzoleni S, Wang E et al (2010) Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin Cancer Res 16:800–813. doi:10.1158/1078-0432.CCR-09-2730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wei J, Barr J, Kong L-Y et al (2010) Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther 9:67–78. doi:10.1158/1535-7163.MCT-09-0734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wei J, Wu A, Kong L-Y et al (2011) Hypoxia potentiates glioma-mediated immunosuppression. PLoS One 6:e16195. doi:10.1371/journal.pone.0016195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wu A, Wei J, Kong L-Y et al (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12:1113–1125. doi:10.1093/neuonc/noq082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Alizadeh D, Zhang L, Brown CE et al (2010) Induction of anti-glioma natural killer cell response following multiple low-dose intracerebral CpG therapy. Clin Cancer Res 16:3399–3408. doi:10.1158/1078-0432.CCR-09-3087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Castriconi R, Daga A, Dondero A et al (2009) NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J Immunol 182:3530–3539. doi:10.4049/jimmunol.0802845

    Article  PubMed  CAS  Google Scholar 

  56. Brown CE, Starr R, Martinez C et al (2009) Recognition and killing of brain tumor stem-like initiating cells by CD8+ cytolytic T cells. Cancer Res 69:8886–8893. doi:10.1158/0008-5472.CAN-09-2687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Pallini R, Ricci-Vitiani L, Banna GL et al (2008) Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res 14:8205–8212. doi:10.1158/1078-0432.CCR-08-0644

    Article  PubMed  CAS  Google Scholar 

  58. De Bacco F, Casanova E, Medico E et al (2012) The MET oncogene is a functional marker of a glioblastoma stem cell subtype. Cancer Res 72:4537–4550. doi:10.1158/0008-5472.CAN-11-3490

    Article  PubMed  CAS  Google Scholar 

  59. Sampson JH, Heimberger AB, Archer GE et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28:4722–4729. doi:10.1200/JCO.2010.28.6963

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xu Q, Liu G, Yuan X et al (2009) Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells 27:1734–1740. doi:10.1002/stem.102

    Article  PubMed  CAS  Google Scholar 

  61. De Rosa A, Pellegatta S, Rossi M et al (2012) A radial glia gene marker, fatty acid binding protein 7 (FABP7), is involved in proliferation and invasion of glioblastoma cells. PLoS One 7:e52113. doi:10.1371/journal.pone.0052113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Cantini G, Pisati F, Pessina S et al (2012) Immunotherapy against the radial glia marker GLAST effectively triggers specific antitumor effectors without autoimmunity. Oncoimmunology 1:884–893. doi:10.4161/onci.20637

    Article  PubMed  PubMed Central  Google Scholar 

  63. Favaro R, Appolloni I, Pellegatta S et al (2014) SOX2 is required to maintain cancer stem cells in a mouse model of high-grade oligodendroglioma. Cancer Res 74:1833–1844. doi:10.1158/0008-5472.CAN-13-1942

    Article  PubMed  CAS  Google Scholar 

  64. Park D, Xiang AP, Mao FF et al (2010) Nestin is required for the proper self-renewal of neural stem cells. Stem Cells 28:2162–2171. doi:10.1002/stem.541

    Article  PubMed  CAS  Google Scholar 

  65. Mehta S, Huillard E, Kesari S et al (2011) The central nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma. Cancer Cell 19:359–371. doi:10.1016/j.ccr.2011.01.035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Vik-Mo EO, Nyakas M, Mikkelsen BV et al (2013) Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother 62:1499–1509. doi:10.1007/s00262-013-1453-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ignatova TN, Kukekov VG, Laywell ED et al (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206. doi:10.1002/glia.10094

    Article  PubMed  Google Scholar 

  68. Phuphanich S, Wheeler CJ, Rudnick JD et al (2013) Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 62:125–135. doi:10.1007/s00262-012-1319-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Orzan F, Pellegatta S, Poliani PL et al (2011) Enhancer of Zeste 2 (EZH2) is up-regulated in malignant gliomas and in glioma stem-like cells. Neuropathol Appl Neurobiol 37:381–394. doi:10.1111/j.1365-2990.2010.01132.x

    Article  PubMed  CAS  Google Scholar 

  70. Speranza MC, Frattini V, Pisati F et al (2012) NEDD9, a novel target of miR-145, increases the invasiveness of glioblastoma. Abstract 3:723–734

    Google Scholar 

  71. Frattini V, Pisati F, Speranza MC et al (2012) FOXP3, a novel glioblastoma proliferation and migration affects. Abstract 3:1146–1157

    Google Scholar 

  72. Patanè M, Porrati P, Bottega E et al (2013) Frequency of NFKBIA deletions is low in glioblastomas and skewed in glioblastoma neurospheres. Mol Cancer 12:160. doi:10.1186/1476-4598-12-160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Nava S, Dossena M, Pogliani S et al (2012) An optimized method for manufacturing a clinical scale dendritic cell-based vaccine for the treatment of glioblastoma. PLoS One 7:e52301. doi:10.1371/journal.pone.0052301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812. doi:10.1126/science.1164382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kim H, Zheng S, Amini SS et al (2015) Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res 25(3):316–327. doi:10.1101/gr.180612.114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank the colleagues from the Department of Neurosurgery of the Istituto Besta, Dr Bianca Pollo and the colleagues of the Unit of Neuropathology, the staff of the cell factory (Cell Therapy Production Unit—UPTC), the Besta Brain Tumor Biobank (BBTB), Mr Piero Tieni (SOL Group Spa, Italy) for the cryo-management service and the technical assistance, Dr Lucia Cuppini for clinical data-management, and Drs Paola Porrati and Elisa Bottega for help in developing the GLP protocol for GSCs generation from CUSA bags. We thank the patients participating in the clinical studies and their families. DENDR-STEM clinical study is supported by Ministry of Health to G. Finocchiaro (RF-2010-2316156), and AIRC (Associazione Italiana per la ricerca sul cancro) (IG 2012 13043) to G. Finocchiaro. DENDR1 and DENDR2 are sponsored by Istituto Besta. DENDR1 is a study carried out as part of an oncology network (Rete Oncologica Lombarda) and funded referring to the deliberations of the regional council of Regione Lombardia no VIII/010761 of 11-12-2009 and DGR IX/1485 of 30-03-2011. Our preclinical studies have been supported by AIRC to S. Pellegatta (IG 2013 N. 14323), “il Fondo di Gio” and “Associazione Italiana Tumori Cerebrali” (AITC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaetano Finocchiaro or Serena Pellegatta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Part of our data were reported in the abstract book of the conference “11th Congress of the European Association of Neuro-Oncology, Turin, Italy, October 9–12, 2014.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finocchiaro, G., Pellegatta, S. Immunotherapy with dendritic cells loaded with glioblastoma stem cells: from preclinical to clinical studies. Cancer Immunol Immunother 65, 101–109 (2016). https://doi.org/10.1007/s00262-015-1754-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1754-9

Keywords

Navigation